


Value-Range Analysis of C Programs



Axel Simon

Value-Range Analysis
of C Programs

Towards Proving the Absence
of Buffer Overflow Vulnerabilities

123



Axel Simon

ISBN: 978-1-84800-016-2 e-ISBN: 978-1-84800-017-9
DOI: 10.1007/978-1-84800-017-9

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008930099

c© Springer-Verlag London Limited 2008
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit-
ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored
or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com



To my parents.



Preface

A buffer overflow occurs when input is written into a memory buffer that is not
large enough to hold the input. Buffer overflows may allow a malicious person
to gain control over a computer system in that a crafted input can trick the
defective program into executing code that is encoded in the input itself. They
are recognised as one of the most widespread forms of security vulnerability,
and many workarounds, including new processor features, have been proposed
to contain the threat. This book describes a static analysis that aims to prove
the absence of buffer overflows in C programs. The analysis is conservative
in the sense that it locates every possible overflow. Furthermore, it is fully
automatic in that it requires no user annotations in the input program.

The key idea of the analysis is to infer a symbolic state for each pro-
gram point that describes the possible variable valuations that can arise at
that point. The program is correct if the inferred values for array indices
and pointer offsets lie within the bounds of the accessed buffer. The symbolic
state consists of a finite set of linear inequalities whose feasible points induce
a convex polyhedron that represents an approximation to possible variable
valuations. The book formally describes how program operations are mapped
to operations on polyhedra and details how to limit the analysis to those por-
tions of structures and arrays that are relevant for verification. With respect to
operations on string buffers, we demonstrate how to analyse C strings whose
length is determined by a nul character within the string.

We complement the analysis with a novel sub-class of general polyhedra
that admits at most two variables in each inequality while allowing arbitrary
coefficients. By providing polynomial algorithms for all operations necessary
for program analysis, this sub-class of general polyhedra provides an efficient
basis for the proposed static analysis. The polyhedral sub-domain presented
is then refined to contain only integral states, which provides the basis for
the combination of numeric analysis and points-to analysis. We also present
a novel extrapolation technique that automatically inspects likely bounds on
variables, thereby providing a way to infer precise loop invariants.
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Target Audience

The material in this book is based on the author’s doctoral thesis. As such it
focusses on a single topic, namely the definition of a sound value-range analy-
sis for C programs that is precise enough to verify non-trivial string buffer
operations. Furthermore, it only applies one approach to pursue this goal,
namely a fixpoint computation using convex polyhedra that approximate the
state space of the program. Hence, it does not provide an overview of various
static analysis methods but an in-depth treatment of a real-world analysis
task. It should therefore be an interesting and motivating read, augmenting,
say, a course on program analysis or formal methods.

The merit of this book lies in the formal definition of the analysis as well
as the insight gained on particular aspects of analysing a real-world program-
ming language. Most research papers that describe analyses of C programs
lack a formal definition. Most work that is formal defines an analysis for toy
languages, so it remains unclear if and how the concepts carry over to real lan-
guages. This book closes this gap by giving a formal definition of an analysis
that handles full C. However, this book is more than an exercise in formalising
a large static analysis. It addresses many facets of C that interact and that
cannot be treated separately, ranging from the endianness of the machine,
alignment of variables, overlapping accesses to memory, casts, and wrapping,
to pointer arithmetic and mixing pointers with values.

As a result, the work presented is of interest not only to researchers and
implementers of sound static analyses of C but to anyone who works in pro-
gram analysis, transformation, semantics, or even run-time verification. Thus,
even if the task at hand is not a polyhedral analysis, the first chapters, on
the semantics of C, can save the reinvention of the wheel, whereas the latter
chapters can serve in finding analogous solutions using the analysis techniques
of choice. For researchers in static analysis, the book can serve as a basis to
implement new abstraction ideas such as shape analyses that are combined
with numeric analysis. In this context, it is also worth noting that the abstrac-
tion framework in this book shows which issues are solvable and which issues
pose difficult research questions. This information is particularly valuable to
researchers who are new to the field (e.g., Ph.D. students) and who therefore
lack the intuition as to what constitutes a good research question.

Some techniques in this book are also applicable to languages that lack the
full expressiveness of C. For instance, the Java language lacks pointer arith-
metic, but the techniques to handle casting and wrapping are still applicable.
At the other extreme, the analysis presented could be adapted to analyse raw
machine code, which has many practical advantages.

The book presents a sound analysis; that is, an analysis that never misses
a mistake. Since this ambition is likely to be jeopardised by human nature, we
urge you to report any errors, omissions, and any other comments to us. To
this end, we have set up a Website at http://www.bufferoverflows.org.
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[167], the ideas behind the TVPI domain [172], a convex hull algorithm for
planar polyhedra [168], the idea of widening with landmarks [170], the idea
of an abstraction map that implicitly handles wrapping [171], and the use of
Boolean flags to refine points-to analysis [166]. Overall, this book makes the
following contributions to the field of static analysis:

1. Chapter 2: Defining the Core C intermediate language, which is concise
yet able to express all operations of C.

2. Chapter 3: The observation of improved precision when implementing
congruence analysis as a reduced product with Z-polyhedra.

3. Chapters 4–6: A sound abstraction of C; in particular:
a) Sound treatment of the wrapping behaviour of integer variables.
b) Automatic inference of fields in structures that are relevant to the

analysis. In particular, fields on which no information can be inferred
are not tracked by the polyhedral domain and therefore incur no cost.

c) Combining flow-sensitive points-to analysis with a polyhedral analysis
of pointer offsets.

d) Sound and precise approximation of pointer accesses when the pointer
may have a range of offsets using access trees.

e) A concise definition of an abstraction map between concrete and ab-
stract semantics.

4. Chapter 7 presents a complete set of domain operations for planar poly-
hedra; in particular, a novel convex hull algorithm [168].

5. Chapter 8 presents the two-variables-per-inequality (TVPI) domain [172].
6. Chapter 9 describes how integral tightening techniques can be applied in

the context of the TVPI domain.



xviii Contributions

7. Chapter 10 discusses techniques for adding polyhedral variables on-the-
fly. Specifically, this chapter introduces the notion of typed polyhedral
variables.

8. Chapter 11 details string buffer manipulation through pointers. The tech-
niques presented in this book are a substantial refinement of [167].

9. Chapter 12 presents widening with landmarks [170], a novel extrapolation
technique for polyhedra.

10. Chapter 13 discusses techniques for analysing a path of the program sev-
eral times using a single polyhedron [166]. It uses the techniques developed
to define a very precise points-to analysis.

The most important contribution of this book is a formal definition of
a static analysis of a real-world programming language that is reasonably
concise and – we hope – simple enough to be easily understood by other
researchers in the field. We believe that the static analysis presented in this
book will be useful as a basis for similar analyses and related projects.



List of Figures

1.1 View of the Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Counting Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Incompatible Points-to Information . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Control-Flow Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 State Spaces in the ��� Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Syntactic Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Core C Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3a Concrete Semantics of Core C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3b Concrete Semantics of Core C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Other Primitives of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Echo Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Points-to and Numeric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Flow Graph of Strings Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Simple Fixpoint Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Tracking NULL Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Flow-Sensitive vs. Flow-Insensitive Analysis . . . . . . . . . . . . . . . 53
3.6 Z-Polyhedra are not Closed Under Intersection . . . . . . . . . . . . . 60
3.7 Right Shifting by 2 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8 Core C Example of Array Access . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 Updating Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.10 Reducing Two Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.11 Topological Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1a The Initial Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1b Removing the Compiler Warning . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1c Observing that ���� May By Signed . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Concrete semantics of Sub C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Signedness and Wrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Wrapping in Bounded State Spaces . . . . . . . . . . . . . . . . . . . . . . . 79



xx List of Figures

4.5 Wrapping in Unbounded State Spaces . . . . . . . . . . . . . . . . . . . . . 80
4.6 Wrapping of Two Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7 Abstract Semantics of Sub C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.8 Merging Wrapped Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Overlapping Write Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Read Operations on Access Trees . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Write Operations on Access Trees . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 Modifying l-Values and Their Offsets . . . . . . . . . . . . . . . . . . . . . . 102
5.5 Abstract Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6 Abstract Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Abstract Semantics: Basic Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Abstract Semantics: Expressions and Assignments . . . . . . . . . . 117
6.3 Functions on Memory Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4 Abstract Semantics: Assignments of Structures . . . . . . . . . . . . . 120
6.5 Abstract Semantics: Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1 Classic Convex Hull Calculation in 2D . . . . . . . . . . . . . . . . . . . . 127
7.2 Classic Convex Hull Calculation in 3D . . . . . . . . . . . . . . . . . . . . 128
7.3 Measuring Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4 Planar Entailment Check Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.5 Redundant Chain of Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.6a Calculating a Containing Square . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.6b Translating Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.6c Calculating the Convex Hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.6d Creating Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.7a Creating a Vertex for Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.7b Checking Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.8 Convex Hull of One-Dimensional Output . . . . . . . . . . . . . . . . . . 142
7.9 Creating a Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.10 Pitfalls in Graham Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.11 Linear Programming and Planar Polyhedra . . . . . . . . . . . . . . . . 145
7.12 Widening of Planar Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.1 Approximating General Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2 Representation of TVPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.3 Removal of a Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.4 Entailment Check for Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.5 Tightening Interval Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.6 Incremental Closure for TVPI Systems . . . . . . . . . . . . . . . . . . . . 157
8.7 Polyhedra with Several Representations . . . . . . . . . . . . . . . . . . . 162

9.1 Cutting Plane Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.2 Precision of Z-Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.3 Calculating Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



List of Figures xxi

9.4 Transformed Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.5 Tightening Interval Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.6 Calculating Cuts for Tightening Bounds . . . . . . . . . . . . . . . . . . . 174
9.7 Redundancies Due to Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.8 Closure for Z-Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.9 Tightening in the TVPI Domain . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.10 Redundant Inequality in Reduced Product . . . . . . . . . . . . . . . . . 181

10.1 Separating Ranges and TVPI Variables . . . . . . . . . . . . . . . . . . . 186
10.2 Allocating Memory in a Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
10.3 Populating the Fields Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.4 Closure and Widening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11.1 Abstract Semantics for String Buffers . . . . . . . . . . . . . . . . . . . . . 199
11.2 Core C of String Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.3 Control-Flow Graph of the String Loop . . . . . . . . . . . . . . . . . . . 201
11.4 Fixpoint of the String Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.5 Joins in the Fixpoint Computation . . . . . . . . . . . . . . . . . . . . . . . 207
11.6 String-Aware Memory Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11.7 String-Aware Access to Memory Regions . . . . . . . . . . . . . . . . . . 211

12.1 Jacobi Iterations on a ���-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.2 Unfavourable Widening Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
12.3 Imprecise State Space for the String Example . . . . . . . . . . . . . . 222
12.4 Applying Widening to the String Example . . . . . . . . . . . . . . . . . 223
12.5 Precise State Space for the String Example . . . . . . . . . . . . . . . . 224
12.6 Fixpoint Using Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.7 Landmark Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
12.8 Non-linear Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.9 Standard vs. Revised Widening . . . . . . . . . . . . . . . . . . . . . . . . . . 231
12.10 Widening from Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

13.1 Precision Loss for Non-trivial Points-to Sets . . . . . . . . . . . . . . . 236
13.2 Boolean functions in the Numeric Domain . . . . . . . . . . . . . . . . . 237
13.3 Control-Flow Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.4 Distinguishing Unbounded Polyhedra . . . . . . . . . . . . . . . . . . . . . 239
13.5 Modifying l-Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
13.6 Abstract Memory Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.7 Semantics of Expressions and Assignments . . . . . . . . . . . . . . . . . 245
13.8 Semantics of Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.9 Accessing a Table of Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
13.10 Precision of Incorporating the Access Position . . . . . . . . . . . . . . 255

14.1 Structure of the Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
14.2 Adding Redundant Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 263
14.3 Iteration Strategy for Conditionals . . . . . . . . . . . . . . . . . . . . . . . . 265



xxii List of Figures

14.4 Iteration Strategy Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
14.5 Deriving SCCs from a CFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
14.6 CFG of Example on Symbolic nul Positions . . . . . . . . . . . . . . . 272
14.7 Limitations of the TVPI Domain . . . . . . . . . . . . . . . . . . . . . . . . . 273



1

Introduction

In 1988, Robert T. Morris exploited a so-called buffer-overflow bug in finger
(a dæmon whose job it is to return information on local users) to mount a
denial-of-service attack on hundreds of VAX and Sun-3 computers [159]. He
created what is nowadays called a worm; that is, a crafted stream of bytes
that, when sent to a computer over the network, utilises a buffer-overflow
bug in the software of that computer to execute code encoded in the byte
stream. In the case of a worm, this code will send the very same byte stream
to other computers on the network, thereby creating an avalanche of network
traffic that ultimately renders the network and all computers involved in repli-
cating the worm inaccessible. Besides duplicating themselves, worms can alter
data on the host that they are running on. The most famous example in recent
years was the MSBlaster32 worm, which altered the configuration database on
many Microsoft Windows machines, thereby forcing the computers to reboot
incessantly. Although this worm was rather benign, it caused huge damage to
businesses who were unable to use their IT infrastructure for hours or even
days after the appearance of the worm. A more malicious worm is certainly
conceivable [187] due to the fact that worms are executed as part of a dæmon
(also known as “service” on Windows machines) and thereby run at a privi-
leged level, allowing access to any data stored on the remote computer. While
the deletion of data presents a looming threat to valuable information, even
more serious uses are espionage and theft, in particular because worms do not
have to affect the running system and hence may be impossible to detect.

Worms also incur high hidden costs in that software has to be upgraded
whenever an exploitable buffer-overflow bug appears. A lot of effort on the part
of the programmer is spent in confining intrusions by singling out those soft-
ware components that need to run at the highest privilege level, with the
aim of executing the majority of the (potentially erroneous) code at a lower
privilege level. While this tactic reduces the potential damage of an attack,
it does not prevent it. A laudable goal is therefore to rid programs of buffer-
overflow bugs, which is the aim of numerous tools specifically created for this
task. So far, no tool has been able to ensure the absence of exploitable buffer
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overflows without incurring either manual labour (program annotations) or
performance losses (run-time checks). As a result, most security vulnerabil-
ities today are still accredited to buffer-overflow errors in software [64, 126].
Interestingly, the US National Security Agency predicted a decade ago that
buffer-overflow attacks would remain a problem for another ten years [173].
While many new projects part from C as the implementation language, most
server software is legacy C code such that buffer overflows remain problematic.
This book presents an analysis that has the potential to automatically detect
all possible buffer overflows and thereby prove the absence of vulnerabilities if
no overflow is found. This analysis is purely static; that is, it operates solely on
the source code and neither modifies nor examines the program’s behaviour
at runtime. Furthermore, it works in a “push-button” style in that no anno-
tations in the program are required in order to use the tool. The challenge in
the pursuit of this fully automated, purely static analysis is threefold:

soundness: It must not miss any potential buffer overflows.

efficiency: It has to deliver the result in a reasonable amount of time.

completeness: It should not warn about overflows if the program is correct.

The question of whether a buffer overflow is possible is at least as difficult
as the Halting Problem and therefore undecidable in general. Due to the na-
ture of this problem, an effective analysis must necessarily compromise with
respect to completeness. The key idea of a static analysis is to abstract a po-
tentially infinite number of runs of a program (which stem from a potentially
infinite number of inputs) into a finite representation that is able to express
the property to be proved. The technical explanation of worms in the next
section introduces the “property to be proved”, namely that a program has
no buffer overflows. The finite representation that we have chosen to express
this property are sets of linear inequalities or, in their geometric interpreta-
tion, polyhedra. To motivate the choice of linear inequalities (rather than, say,
finite automata as used in model checking [49]), we examine a small exam-
ple program in Sect. 1.2. We then briefly comment on the three challenges of
soundness, efficiency, and completeness of our analysis, a preview of the three
parts that comprise this book. This chapter concludes with a comparison of
related tools and a summary of our contributions.

1.1 Technical Background

In its simplest form, a program exploiting a buffer overflow manages to write
beyond a fixed-sized memory region allocated on the stack. Consider, for ex-
ample, a function that declares a local 2000-byte array buffer into which
it copies parts of a byte stream that it receives from the network. The call



1.1 Technical Background 3

data of caller

BP → last function argument

...

first function argument

return address

buffer[1999]

...

buffer[0]

SP → top of stack

Fig. 1.1. A view of the stack after entering a function that declares a 2000-byte
buffer. The pointers BP (base or frame pointer) and SP (stack pointer) manage the
stack, which grows downwards (towards smaller addresses).

stack after invoking this function takes on a form that resembles the schematic
representation in Fig. 1.1.

If a byte stream can be crafted such that more than 2000 bytes are copied
to buffer, the memory beyond the end of the buffer will be overwritten,
thereby altering the return address. A worm sets the return address to lie
within buffer itself, with the effect that the byte stream from the network
is run as a program when the function returns. It is the program encoded in
the byte stream that determines the further action of the worm. A detailed
description of how to craft one such input stream was given by a hacker known
by the pseudonym of Aleph One, who presented a skeleton of a worm [141] that
forms the basis of many known worms [159]. While the technical details are
certainly interesting, the focus of this book lies in preventing such intrusions.
Specifically, this work aims to prove the absence of buffer overflows, which
is equivalent to showing that every memory access in a given program lies
within a declared variable or dynamically allocated memory region. Detecting
possible out-of-bounds accesses to variables is useful for any programming
language with arrays (or plain memory buffers); however, only languages that
do not check access bounds at run-time can create programs where buffer
overflows create security vulnerabilities. The most prominent language in this
category is C, a programming language that is widely used to implement
networking software. Programmers chose C mostly for its ubiquity but also
for the speed and flexibility that its low-level nature provides. However, it is
exactly this low-level nature of C that makes program analysis challenging.
Before Sect. 1.4 reviews the techniques to overcome the complexity of these
low-level aspects, we detail what kinds of properties our analysis needs to
extract from a program.
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1.2 Value-Range Analysis

In order to prove the absence of run-time errors such as out-of-bounds array
accesses, it is necessary to argue about the values that a variable may take on
at a given program point. In the following, we shall call a static analysis that
infers this information a value-range analysis. While this term was coined in
the context of an interval analysis [95] we use a more liberal interpretation
in that the inferred information may be more complex than a single interval.
In this section we show how linear inequalities can be used to infer possible
values of variables and that this approach can prove that all memory accesses
lie within bounds. We illustrate this for the example C program in Fig. 1.2.
The purpose of the program is to count the occurrences of each character in its
first command-line argument. The idea is to define a table dist, where the ith
entry stores the number of characters with the ASCII value i that have been
observed in the input so far. Among the declared variables is the dist table
containing 256 integers and a pointer to the input string str. In line 10, str
is set to the beginning of the first command-line argument, namely argv[1].
This input string consists of a sequence of bytes that is terminated by a nul
character (a byte with the value zero). Note that the use of a nul character to
denote the length of the string is not enforced in C, even for arrays of bytes:
The next line calls the function memset, which sets the bytes of a memory
region to a given byte value, in this case zero. Here, the length of the buffer
is passed explicitly as ������(dist) rather than being stored implicitly. The
use of several conventions to store size information for memory regions is one
of the idiosyncrasies of C that fosters incorrect memory management.

The ���	� loop in lines 13–16 is the heart of the program. The loop iterates
as long as the character currently pointed to by str is non-zero. Due to the
str++ statement in line 15, the loop will be executed for each character in the
argv[1] buffer until the terminating zero character is encountered. The body
of the loop increments the ith element of the dist array by one, assuming
that the current character pointed to by str has the ASCII value i. Note that
the character read by *str is converted to an integer, which ensures that the
compiler does not emit a warning about automatic conversion from characters
to an array index, which, according to the C standard [51], is of type �
�.
The purpose of the last lines of the program is to print a fragment of the
calculated character distribution to the screen.

Now consider the task of proving that all memory accesses are within
bounds. While this task is trivial for variables such as i and str, express-
ing the correctness of the accesses to the memory regions dist and *str is
complicated by the fact that the input string can be arbitrarily long.

In order to simplify the exposition, we assume that the program is run
with exactly one command-line argument such that argc is equal to 2 and
the return statement in line 9 is never executed. Under this assumption, the
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1 �������� <stdio.h>

2 �������� <string.h>

3
4 ��	 main(��	 argc , �
��* argv []) {

5 ��	 i;

6 �
��* str;

7 ��	 dist [256]; /* Table of character counts.*/

8
9 �
 (argc !=2) ��	��� 1; /* Expect one argument.*/

10 str = argv [1]; /* Let str point to input.*/

11 memset(dist , 0, �����
(dist )); /* Clear table.*/

12
13 �
��� (*str) {

14 dist[(��	) *str ]++;

15 str++;

16 };

17
18 
��(i=32; i<128; i++) /* Show dist for printable */

19 printf("’%c’�:�%i\n", i, dist[i]); /* characters.*/

20
21 ��	��� 0;

22 }

Fig. 1.2. Example C program that calculates the distribution of characters.

correctness of all memory accesses can be deduced with a few linear equalities
and inequalities:

• The content of argv[1] is a pointer to a memory region of variable size xs.
Since we cannot explicitly represent an arbitrary number of array elements,
we merely track the first known zero element of this memory region as
xn (the so-called nul position), which indicates the end of the string.
A conservative assumption is that the buffer is no bigger than what is
needed to store the first command-line argument and the nul position.
Hence, the relationship between the buffer size and the nul position can
be expressed as xn = xs − 1.

• Line 10 assigns the pointer to this memory region to str. C allows so-called
pointer arithmetic in that the address stored in str can be modified as if
it were an integer variable. In our example, line 15 increments str by one
and hence introduces an offset xo relative to the beginning of the buffer;
that is, xo denotes the difference between the pointers str and argv[1].

• From the offset xo and the null position xn, we can check if the loop
invariant holds. As long as xo < xn, the value of *str is non-zero and the
loop is executed. As soon as xo = xn, the loop body is not entered again
and the execution of the loop stops. If we can further infer that xo = xn
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holds every time the loop stops, we have shown that the buffer pointed to
by argv[1] is never accessed beyond its bound because all offsets 0, . . . , xo

during the execution of *str are no larger than xs since xo ≤ xn = xs−1.
• The values of characters read by *str are not known, except that they

are non-zero with the exception of the last element. However, the value
must be within the range of the C ���� type; that is, the index into the
dist array, xd, is restricted by CHAR_MIN ≤ xd ≤CHAR_MAX. The access to
dist is within bounds if 0 ≤ xd ≤ 255 holds; that is, if CHAR_MIN= 0 and
CHAR_MAX= 255.

• Finally, the correctness of the access dist[i] in line 19 can be ensured if
the loop invariant 0 ≤ xi ≤ 255 can be guaranteed, where xi represents
the value of i within the loop body.

Note that the given chain of reasoning mainly relies only on linear inequal-
ities that can be rewritten to a1x1 + . . . + anxn ≤ c, where a1, . . . , an, c ∈ Z,
and x1, . . . xn represent variables or properties of variables in the program. In
particular, the state of a program can be described by a conjunction of in-
equalities; that is, a set of inequalities all of which hold at the given program
point. Note that in this representation an equality such as x = y + z can be
represented as two inequalities, x−y−z ≤ 0∧−x+y+z ≤ 0. Simple toy lan-
guages consisting of assignments of linear expressions can easily be abstracted
into operations on inequalities [62]. The next section introduces some of the
subtleties that arise in the analysis of real-world languages.

1.3 Analysing C

Implementing a static analysis that is faithful to the semantics of a real-world
programming language requires that the semantics of the language be well (or
even formally) defined. Giving a formal semantics to an evolving language that
already has undergone several standardisations is a laborious task [143] and
not very practical if C programs do not adhere to any (single) standard. Worse,
even the latest C standard [51] leaves certain implementation aspects up to
the compiler, such that the answer to the question of whether the program in
Fig. 1.2 is correct with respect to memory accesses can only be “maybe”: On
many platforms, including Linux on IA32 architectures and Mac OS X on Pow-
erPC, the ���� type is signed, and hence −128 ≤ xd ≤ 127, thereby violating
the requirement that the index into dist lie within the interval [0, 255]. On
platforms where ���� is unsigned, such as Linux on PowerPC, the program is
correct. Next to implementation-specific semantics, C itself can be quite intri-
cate. The seemingly plausible change of the statement dist[(���) *str]++;
to dist[(��	�
��� ���) *str]++; does not solve the problem: The so-called
promotion rules of integers in C will first convert the value of *str to ���

(i.e., to a 32-bit value in [−128, 127]) and then to an unsigned integer (i.e., to
[232 − 128, 232 − 1] ∪ [0, 127]), leaving the program essentially unchanged.
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Designing an analysis that interprets C programs in the same way as a par-
ticular mainstream compiler is a major undertaking in itself; see, e.g., [137].
Hence, rather than implementing a C front end for the analysis, we use the
open source GNU C compiler as the front end and extract its intermediate
representation. We convert this intermediate representation into Core C, a lan-
guage amenable to our static analysis; Core C, defined in Chap. 2, contains
mainly statements (rather than declarations) and attaches type information to
operations (rather than to variables), thereby making many implementation-
specific details explicit. Its formal semantics forms the basis of a sound ab-
straction to operations on inequalities, whose principles are explained in the
next section.

1.4 Soundness

Given that a program may operate on a plethora of different inputs, it follows
that an analysis that automatically proves every possible execution of the
program correct must abstract from the actual program states, for instance,
by summarising the possible valuations of variables at a given program point.
Section 1.2 argued that the property of correct memory management can be
expressed with a set of linear inequalities. Indeed, the idea of the analysis is
to infer a set of inequalities that describes possible valuations of variables at
a certain program point. Furthermore, since we are interested in verification,
any such inequality set must be not only sound (correct) but precise enough to
infer invariants that show that the program never exhibits a buffer overflow.
Hence, the abstraction of sets of inequalities was chosen for its expressiveness.
For the sake of this section, however, we will focus on soundness and leave the
discussion of the achievable precision to Sect. 1.6.

1.4.1 An Abstraction of C

Simple program statements like i=2*j+3 are readily translated into linear in-
equalities: With xi and xj representing the values of i and j, respectively,
the assignment can be expressed as xi − 2xj = 3. However, analysing the full
programming language C requires the translation of features such as arrays,
pointer arithmetic, unions, etc., into a concise and, in particular, finite rep-
resentation. To this end, several abstractions are needed. The following list
summarises all abstractions applied within this work:

value abstraction: Summarising the possible values of a variable of each run
into a finite representation such as an interval is the classic application of
abstract interpretation [95]. With respect to the example, we observe that
the value of the loop index i can be summarised to the interval [32, 127].
Several numeric domains, such as intervals, affine equations [109], and
convex polyhedra [62], have been proposed to abstract concrete program
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values. The analysis presented in this book uses the domain of convex
polyhedra in addition to a simple domain of congruences [85]; that is,
information on the multiplicity of variable values.

content abstraction: In C, the size of some memory regions is determined by
the value of a variable at run-time. At any given program point, all runs
of a program (and hence all variable-sized memory regions) must be de-
scribed by a single abstract state. Since the abstract state is a polyhedron
over a fixed, finite number of variables, it is not possible to map each con-
crete element of a memory region to one variable in the polyhedron. This
may seem like a severe limitation, but the example program shows that
the content of the dist array is irrelevant when proving correct memory
management.

l-value abstraction: Each memory region in C has an address that can be
inquired and passed around like any other value. These so-called pointers
play a crucial role in C and motivated research into so-called points-to
analyses [3, 46, 74, 99, 144, 176]. A points-to analysis treats addresses of
variables purely symbolically since the actual addresses of variables can,
in principle, differ between two program runs. The invariants inferred by
a points-to analysis state which (symbolic) addresses may be found in a
pointer variable at run-time.

region summary: Due to dynamic memory allocation, C programs can al-
locate an arbitrary number of distinct memory regions. These must be
summarised into a finite set of memory regions to obtain a terminating
and efficient analysis.

None of these abstractions are particularly new, although their combination
has not been thoroughly explored. We briefly discuss the problems and our
improvements of these abstractions, and their combination.

1.4.2 Combining Value and Content Abstraction

A static analysis usually summarises the possible values of variables, while
other memory regions are ignored. Compilers, for instance, perform constant
propagation and points-to analysis on simple variables – that is, variables that
are not arrays or structures. In contrast to simple variables, worst-case values
are usually assumed when accessing structures and arrays for variables whose
address is taken or that are accessed with incompatible types. Venet and Brat
showed how an interval analysis can be defined over so-called fields that are
“added” to variables and C ������s as part of the analysis [182]. The idea
is that fields are only added if the access position is unequivocal; that is, if
the array index or the pointer offset is constant. Consider the access dist[i]
in line 19 of our example program. The index variable i is always accessed
in its entirety and hence at the same offset 0. The initialisation in line 18
therefore adds a field containing the polyhedral variable xi. In contrast, the
variable dist is accessed at a variable offset that is calculated from the index i.
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In this case, the write position is an interval xi ∈ [32, 127] (rather than a
constant) and therefore no field is added. The approach of adding a new field
only if the access offset is constant produces a finite number of fields and
hence a finite number of variables in the polyhedron. In Chap. 5, we extend
this approach to allow the same part of a memory region to be accessed with
different types. These accesses are surprisingly common in C programs. For
example, in Fig. 1.2, the call to memset accesses dist as a memory region
of ����, whereas line 14 accessed dist with its declared type ���. Hence,
treating differently typed accesses to the same memory region precisely is
important and one novelty in this book.

This approach to finiteness simply ignores the content of memory regions
that are accessed at different offsets, thereby resulting in an analysis that
is too imprecise for many verification tasks. This problem can be tackled by
inferring information about certain properties of a memory region rather than
inferring the memory region’s actual content. We consider two possibilities:

element summary: Memory regions such as the dist array can be summarised
by representing all array elements with a single abstract variable. In the
case of the example, xe might represent the values of all elements of dist.
An analysis might infer that xe ∈ [0, 0] after zeroing the array at line 11.
During each loop iteration, one element of the array is incremented while
the remaining elements stay the same. This operation can be reflected on
the abstract variable xe by incrementing it weakly; that is, by setting xe

to an approximation of the previous value and the previous value plus
one [80]. For the example program, xe ∈ [0, xs] could be inferred; that is,
each array element has a value between 0 and the size of the string.

meta information: Rather than inferring the values of (elements of) memory
regions, it is possible to infer information relating to a certain property of
a memory region. For instance, we explicitly state where the nul character
in the argv[1] buffer resides. The position of the nul has been recognised
to be the crucial information when analysing C string buffers [189].

In this work, we do not pursue the idea of summarising elements, mainly
due to unresolved issues on constructing summary elements, if and how they
can be split when overwriting them and hence how to limit the number of
summary elements. In contrast, inferring information on the first zero posi-
tion in a buffer requires a single polyhedral variable for each memory region
and hence has no finiteness problems. Tracking nul positions as part of a
polyhedra-based analysis was presented in [71, 167], and the approach is fur-
ther developed in Chap. 11.

1.4.3 Combining Pointer and Value-Range Analysis

In order to evaluate a read or a write access through a pointer variable, it is
necessary to know what memory regions that pointer points to. Several differ-
ent approaches can be taken to infer this information. During the last decade,
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(1)

f(&a, &b);

��� ���
xa xb

(2)

f(&d, NULL);

���
xd

(3)

f(&c, &c);

��� ��	
xc

(4)

f(int* x, int* y) {
���

1,2,3 


� 3 ���1

xe xf

Fig. 1.3. Points-to information from different call sites.

tremendous advances have been made in the field of flow-insensitive points-to
analysis [99,176] in which a set of all l-values (addresses of memory regions) is
calculated that a given pointer variable may possibly contain during any exe-
cution of the program. The precision of points-to analysis can be substantially
improved by performing a field-sensitive and/or a context-sensitive analysis.

A field-based analysis treats fields of a C ������ as independent variables.
A sound field-sensitive analysis must cater to pointer arithmetic commonly
found in C programs; that is, a pointer might have a non-zero offset added
to it before it is dereferenced, thereby accessing a different field from what
its original l-value suggests. Chapter 5 shows how pointer arithmetic can be
analysed by using the value-range analysis to calculate offsets relative to a base
address, thereby giving precise offset information when pointers are derefer-
enced. In contrast, the most precise field-based points-to analyses distinguish
between constant and non-constant offsets [175]. Tracking a points-to set using
a points-to domain separately from the numeric offset that is tracking using
a numeric domain is not always straightforward, and a formal description of
how to combine both analyses is one contribution of this work.

For the sake of scalability, most points-to analyses are context-insensitive;
that is, they combine points-to sets from different call sites when analysing a
given function. While a context-insensitive approach scales well, it is not suit-
able for polyhedral analysis. Consider the example in Fig. 1.3, which shows
the resulting points-to sets in drawing (4) for a function f(���* x, ���* y)
that was called as (1) f(&a,&b), (2) f(&d, NULL), and (3) f(&c, &c). The
pointed-to memory regions are shown as squares that each contain a single
field represented by a polyhedral variable xi that stores the value of the un-
derlying integer. The first invocation seems to imply that the polyhedron at
the callee should contain one variable for each parameter, here xe and xf in
(4), to which the values of xa and xb from the caller are assigned. For the
second invocation, however, the memory region containing xf does not exist
and xe should be the only variable in the polyhedron. Hence the variable xf

represents no concrete memory region, which raises some difficult questions as
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to what a linear relationship between, say, xf and xe means. Another problem
occurs at the call site (3), where we chose to represent xc by xe but xf would
have been equally justifiable.

The problem of different calling contexts also arises in the context of per-
forming a context-sensitive analysis that aims to reuse a previously analysed
function. While polyhedra are, in principle, able to express linear relationships
between input and output variables of a function that can be substituted at
every call site, the C language itself seems to be a major obstacle to a context-
sensitive analysis. For instance, Nystrom et al. [139] proposed a two-stage
points-to analysis that is fully context-sensitive; that is, their analysis is as
precise as inlining each function at all call sites. In a bottom-up pass, their
analysis calculates summaries for each function, which are then inserted at
each call site before a top-down pass calculates the points-to sets. Each sum-
mary describes all side effects that a function has on its local heap. However,
for functions that are called with incompatible points-to sets, all statements
that are relevant to l-value flow have to be copied to each call site, thereby
defying the goal of context-sensitive analysis without inlining function bodies.
This observation suggests that a fully context-sensitive analysis of C is likely
to be impossible. In this work, we simply expand each function at each call
site, which, in principle, incurs an exponential growth in the code size, but
has been successfully applied in verification [31]. This choice also prohibits
the analysis of recursive functions.

Finally, analysing dynamically allocated memory requires further tech-
niques to ensure finiteness. Allocation sites that are only executed once should
simply create a new memory region that can be read and written like de-
clared variables in the program. In contrast, memory regions allocated within
a loop must be summarised. We follow the classic approach in that memory
regions that are allocated by a malloc statement at the same program point
are summarised. By transforming the input program such that every func-
tion is expanded at its call site, this tactic is automatically refined such that
memory regions allocated by a malloc statement in a given function are not
summarised for different call sites of the function. In the upcoming analysis,
functions are only inlined semantically, that is, they are re-analysed for every
new call site such that care has to be taken to achieve the same semantics for
dynamically allocated memory regions.

This concludes the overview of what we choose to extract from a C pro-
gram. The details of these abstractions form Part I of this book. We now
embark on the question of how to automatically approximate the state space
of a C program.

1.5 Efficiency

Any useful program-analysis tool has to be efficient in order to be of practical
help to the programmer. Interestingly, an efficient analysis can be implemented
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on top of semi-decision procedures such as theorem proving by using time-
outs [152]. Theorem proving is an attractive approach due to its ability to
describe properties over a potentially infinite state space such as the value
of a variable or the shape of a heap. However, the ability to create arbitrar-
ily sized descriptions can affect termination of automated proving strategies,
hence the use of timeouts. In contrast, classic model checking operates on finite
automata (that is, a finite state space) and therefore always terminates [49].
In practice, however, it is difficult to soundly map the state of a program to a
finite automaton of acceptable size. Thus, model checking is often impractical
in that the size of the finite automaton grows too rapidly with respect to the
input program to permit the analysis of larger systems [48]. Rather than using
a finite state space, our analysis uses a convex polyhedron to describe a poten-
tially infinite state space, which necessarily implies that some descriptions are
approximations to the actual state space. On the positive side, our analysis
can be terminating, as the inferred polyhedra are always finite. In this book,
we use the framework of abstract interpretation by Cousot and Cousot [56] to
describe this approximating analysis. We briefly illustrate the idea of a static
analysis based on abstract interpretation before discussing the challenge of
implementing such an analysis efficiently.

Consider the ��� loop in lines 18–19 of the running example in Fig. 1.2,
whose control-flow graph is depicted in the upper half of Fig. 1.4. The edges
of the control-flow graph are decorated with the polyhedra P,Q,R, S, and T ,
which denote the state at that given program point and which we write as sets
of inequalities. In order to illustrate how these polyhedra are incrementally
inferred, we write Pj to indicate the jth update of the state P . As before, let xi

denote the value of the program variable i. After executing the initialisation
statement i=32, the initial state of P is given by P0 = {xi = 32}. This
state is propagated to Q0 = P0, where the test i<128 partitions this state
into S0 = {xi = 32, xi ≤ 127} and R0 = {xi = 32, xi ≥ 128}. Note here that
xi < 128 is tightened to xi ≤ 127 since all program variables are integral. With
respect to the sets of points described by these states, S0 is equivalent to Q0

and R0 is unsatisfiable; that is, the set of points described by R0 is empty. An
unsatisfiable polyhedron implies that the corresponding point in the program
is unreachable; here, the state of R0 implies that the loop will not terminate
without iterating at least once. The analysis continues by propagating the
satisfiable state S0. Since the value of xi in S0 is 32 and therefore between 0
and 255, the array access dist[i] is within bounds. Incrementing the loop
counter yields a new state T0 = {xi = 33}, which is propagated back to
the beginning of the loop to where the control-flow paths merge. It is at
this merge point that the two state spaces P0 and T0 are joined to form
Q1 = P0 � T0 = {32 ≤ xi ≤ 33}, where the join operator � calculates a
polyhedron that includes its two arguments. Since the maximum value of xi

is still below 128, another iteration of the loop is calculated, yielding T1 =
{33 ≤ xi ≤ 34} after the instruction i++. This state in turn can be joined to
form Q2 = P0 � T1 = {32 ≤ xi ≤ 34}. Depending on the loop bounds, the
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Fig. 1.4. The control-flow graph of the original ��� loop and the modified variant.

analysis may perform an excessive number of iterations, which is unacceptable
for an efficient analysis. In order to avoid this, widening can be applied, which
accelerates the fixpoint calculation [59]. The principal idea of widening is to
compare two state spaces that result from two consecutive iterations and
remove those inequalities that are not stable. In the example, we calculate
the widened polyhedron Q′

2 = Q1∇Q2; that is, we remove all inequalities
from Q1 that do not exist in Q2. The result is Q′

2 = {32 ≤ xi}. Enforcing
the condition i<128 yields S2 = {32 ≤ xi ≤ 127} for the loop body and
R2 = {32 ≤ xi ≥ 128}, which is equivalent to {xi ≥ 128} as state space when
the loop exits. Analysing the loop body with S2 will infer that xi ∈ [32, 127]
and hence that the index i lies within the bounds of the array. Furthermore,
after the evaluation of i++, the new state space T2 = {33 ≤ xi ≤ 128} arises
and hence Q3 = P0 � T2 = {32 ≤ xi ≤ 128}. Intersecting this state with the
loop invariant xi ≤ 127 yields S3 = {32 ≤ xi ≤ 127}, which is equivalent to
S2, and hence a fixpoint has been reached. It can be shown that the inferred
state includes all possible values that the variable i can take on in the program.

While the calculation above of the loop invariant xi ∈ [32, 127] demon-
strates the basic technique of inferring a fixpoint of a loop, the real strength
of polyhedra lies in the ability to infer relationships between different vari-
ables. In order to illustrate this ability, consider the following modified ���

loop that is functionally equivalent to the one in Fig. 1.2:

���* d=&dist; d+=32;
��� (i=32; i <128; i++, d++)

printf(" ’%c’�:�%i\n", i, *d);

Instead of recalculating the array index, the access position is calculated
incrementally by advancing the pointer d by one element in each loop iteration.
The corresponding control flow is shown in the second graph of Fig. 1.4.
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Fig. 1.5. Inferring the state space within the loop using polyhedral analysis.

Let xo denote the byte offset of pointer d relative to the beginning of dist.
Assuming that each ��� element of the array requires four bytes of storage,
the statement d+=32 increments xo from 0 to 128 and the abstract state
with which the loop is entered is given by P0 = {xi = 32, xo = 128}. After
evaluating the test i<128, xi is incremented by one, while xo is incremented
by the size of one element of dist, namely 4 bytes. Thus, the state after
executing the loop body once is T0 = {xi = 33, xo = 132}.

While the join P0�T0 can be described by {32 ≤ xi ≤ 33, 128 ≤ xo ≤ 132},
a more precise set of inequalities exists that includes P0 and T0. Consider the
geometric interpretation of the state space in the first graph of Fig. 1.5. A more
precise (but still concise) characterisation of the state space is given by the
convex hull of the two points; that is, the smallest closed, convex space that
includes P0 and T0. In our example, a set of inequalities that includes the
convex hull of P0 and T0 is Q1 = {32 ≤ xi ≤ 33, xo = 4xi}, as depicted in the
second graph of the figure.

As with the example before, we evaluate another loop iteration in which
S1 = Q1 and where T1 = {33 ≤ xi ≤ 34, xo = 4xi}. The join P0 � T2 is again
the convex hull of the two polyhedra, yielding Q2 = {32 ≤ xi ≤ 34, xo = 4xi},
which differs from Q1 only in the upper bound on xi. Applying widening yields
the infinite state Q′

2 = Q1∇Q2 = {32 ≤ xi, xo = 4xi}. The loop invariant
ensures that the next iteration yields Q3 = Q′

2 ∪ {xi ≤ 127}, as shown in the
third graph of Fig. 1.5.

The polyhedron Q3 = {32 ≤ xi ≤ 127, xo = 4xi} describes an invariant
that is sufficient to show that the pointer d has an offset between 32 and 512
and hence lies within the dist array, which contains 1024 bytes. Note that
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this invariant required reasoning about the relationship between xi and xo:
Without this relational information, widening would have resulted in
{32 ≤ xi, 128 ≤ xo}, which, by adding the loop invariant i<128, would give
the less precise loop invariant {32 ≤ xi ≤ 127, 128 ≤ xo}, which leaves xo

unrestricted.
We chose to infer relational information, as previous work based solely on

intervals yielded results that were too imprecise for the verification of string
buffer operations [184]. One drawback of using convex polyhedra as the basis
for a static analysis is their inherent complexity. Specifically, calculating the
convex hull of two polyhedra is an exponential operation [24]. This book
therefore presents a novel sub-class of general polyhedra that is based on the
idea of decomposing polyhedra into sets of planar polyhedra. To this end,
Chap. 7 introduces efficient algorithms for planar polyhedra; in particular, we
present a novel convex hull algorithm for planar polyhedra. By building on
these planar algorithms, Chap. 8 presents the Two-Variables-Per-Inequality
(TVPI) domain, which provides an efficient way of manipulating polyhedra
in which each inequality has at most two variables. The following chapter
presents techniques to refine polyhedra around the contained set of integral
points, a process that is required to ensure that coefficients of inequalities do
not grow indefinitely. Such a guarantee cannot currently be given for general
polyhedra. As such, the TVPI domain presents, to our knowledge, the most
precise polyhedral domain with a performance guarantee.

Given an abstraction from C and an efficient domain to calculate an over-
approximation of its state space, we proceed to detail improvements in the
precision of the analysis.

1.6 Completeness

For the sake of staying focussed on relevant aspects of finding buffer overflows,
we chose to test and refine our analysis against a program called qmail-smtp,
which is part of a mail transfer agent (MTA) whose task it is to forward
email traffic. As this program parses incoming emails from the network, it
is susceptible to buffer-overflow attacks and therefore a prime candidate for
inspection. It is also simple enough in that it is single-threaded, does not make
use of recursive functions, and uses few library functions.

The verification of real-world programs opens up many challenges, some
of which are not clear until the analysis is run the first time on the chosen
input program. While the aspects of soundness and efficiency need to be ad-
dressed before an analysis is implemented, the precision of an analysis (or the
lack thereof) often manifests itself when the analysis is run. When precision
is unduly lost, the analyser emits warnings that do not correspond to actual
mistakes in the program. These so-called false positives then motivate a re-
finement of the analysis. Note that the way the C program is abstracted and
the choice of the polyhedral domain both significantly affect the ability to in-
fer precise results. However, this section presents three aspects of our analysis
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that are solely dedicated to improving the precision. These aspects are the
ability to argue about nul positions in string buffers, an improved widening
strategy, and a refinement of the points-to analysis using Boolean flags in the
polyhedral domain. We discuss each aspect in turn.

1.6.1 Analysing String Buffers

A basic idiom in the context of string buffer operations is to iterate over
the contents of a string until the nul position, which terminates the string,
is reached. An example of this operation is given in lines 13–16 in Fig. 1.2.
Here, the buffer argv[1] denotes the first command-line argument, which, if
it exists, contains a nul -terminated string of arbitrary size. Due to the un-
known size, it is not possible to model individual elements of this buffer with
polyhedral variables. Instead, the buffer argv[1] can be treated as a dynam-
ically allocated memory region whose size is given by the polyhedral variable
xs. Furthermore, it is known that a nul character exists that terminates the
input argument. Without loss of generality, we can assume that this nul char-
acter resides in the last element of the buffer. Suppose that the polyhedral
variable xn denotes this nul position; then xn = xs−1. As a third parameter,
let xo denote the offset of the pointer str relative to the address argv[1].
To the programmer, it is rather obvious that the pointer str is incremented
in line 15 until the nul position has been reached. To the analysis, this in-
formation is only indirectly available since the test *str in line 13 does not
query the nul position xs but merely accesses the buffer. Let xc denote the
character returned by *str. The idea of a string buffer analysis is to encode
the nul position by refining xc to [1, 255] if the access position xo is in front
of the nul position xn and to refine xc to 0 if xo = xn. By using the ability
of polyhedra to express linear relationships between variables, we relate xc,
xo, and xn such that testing the loop condition *str results in refining xn

and xo. In particular, testing if *str is true corresponds to adding xc > 0 to
the state, which recovers the information that xo < xn. Similarly, testing if
*str is false corresponds to adding xc = 0 to the state, which recovers the
information that xo = xn. In fact, this test partitions the state space (since
xc is positive) and thereby infers that xo = xn on loop exit and that xo < xs

within the loop, which proves that argv[1] is never accessed out-of-bounds.
The details of this analysis are given in Chap. 11, which presents the string
buffer analysis as a refinement of the basic analysis of C that is described in
the first part of the book.

1.6.2 Widening with Landmarks

The key to an efficient polyhedral analysis is to accelerate the fixpoint cal-
culation to overcome slowly growing coefficients in inequalities. This process
is known as widening [59] and was already applied in Sect. 1.5. The prin-
cipal idea of widening is to remove inequalities that have changed between
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two consecutive iterations. The full removal of inequalities, however, incurs a
substantial precision loss, as witnessed by the Ri states from the last section
that describe the state space at the end of the ���-loop in lines 18–19. While
the actual value of the loop index i on exit of the loop is 128, applying widen-
ing can only infer that xi ≥ 128. While an operation called narrowing [59]
can be applied to refine this state again, we pursue a different strategy in
which widening is modified in that changing inequalities are not removed but
merely relaxed. The amount by which inequalities are relaxed is inferred by
observing conditionals (so-called landmarks) in the analysis. For instance, the
test xi ≤ 127, which stems from the loop condition i<128 in line 18, con-
veys the information that the upper bound of xi in Q1 = {32 ≤ xi ≤ 33}
and Q2 = {32 ≤ xi ≤ 34} should be increased by another 94 units to yield
Q′

2 = {32 ≤ xi ≤ 128}. Using this state instead of the fully widened state
Q′

2 = {32 ≤ xi} enables the analysis to infer that R2 = {xi = 128} rather
than R2 = {xi ≥ 128}. Widening with landmarks is presented in Chap. 12,
where it is shown to be crucial for analysing string buffers in a precise way.

1.6.3 Refining Points-to Analysis

Using a standard points-to analysis is often too imprecise when it comes to
the verification of programs. Next to field sensitivity and context sensitivity,
a points-to analysis can be categorised with respect to its flow sensitivity.
A flow-insensitive analysis infers a single points-to set for each program vari-
able that is valid for the whole program. In contrast, a flow-sensitive points-to
analysis infers a points-to set at each program location. Only the latter analy-
sis can therefore determine that a statement such as �� (p!=NULL) *p=42;
does not dereference a NULL pointer. While the analysis as presented in the
first part performs a flow-sensitive analysis, Chap. 13 details a refinement of
this flow-sensitive analysis where the content of points-to sets can be related
with the numeric values of program variables, thereby substantially improving
the precision of standard flow-sensitive points-to analysis.

1.6.4 Further Refinements

The refinements presented allow our analysis to verify non-trivial examples.
Unfortunately, even with the techniques described so far, the program in
Fig. 1.2 still evades verification. One problem is the argument argv to main,
which constitutes an array of pointers. In order to express that this array
contains an arbitrary number of pointers to nul -terminated strings, it re-
quires the ability to state that all pointers in the argv array have an offset of
zero, which is beyond the abstraction techniques of our analysis. However, it
is possible to analyse the memory management of the example precisely if a
string constant is assigned to str in line 10. Interestingly, the verification of
the example evades the current implementation of our analysis when argv is
fixed to contain a single pointer to a nul -terminated buffer of arbitrary size
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as described in Sect. 1.6.1. Chapter 14 details this and other shortcomings and
suggests efficiency and precision improvements in order to make the analysis
applicable to real-world C programs.

We conclude the introduction with an overview of related tools and a
summary of our contributions to the field of soundly analysing C programs.

1.7 Related Tools

In this section, we present other tools to analyse C or C++ programs, which
can generally be partitioned into sound analyses and unsound analyses. While
both approaches create false positives, the unsound analyses may also miss
errors and thus cannot prove program correctness. We focus mostly on sound
analyses, as their techniques are more relevant to the analysis presented in
this book.

1.7.1 The Astrée Analyser

The Astrée analyser [30,31,60] is a value-range analysis in the sense of Sect. 1.2
with the aim of proving the absence of run-time errors; that is, range overflows,
division by zero, out-of-bounds array accesses, and other memory management
errors. The analysis is sound and precise even for floating-point calculations.
However, it is restricted to embedded systems in that dynamic memory al-
location is only allowed at start-up (no heap-allocated data structures) and
recursion is only allowed if it is bounded, as all functions are semantically in-
lined. The target of the analysis is flight-control software for Airbus A340 and
A380 aeroplanes, which features, for instance, second-order digital filters that
are repeatedly evaluated. The analysis is able to prove the absence of run-time
errors on programs as large as 400,000 lines of code in less than 12 hours using
2.2 GB of memory. In order to estimate the valuations of floating-point vari-
ables that arise in the digital filter code, special domains such as the Ellipsoid
domain were defined [31]. Linear relationships are inferred using the Octagon
domain [130], which can express relationships of the form ±x± y ≤ c, where
c can either be an integer or a floating-point number. Since the largest pro-
grams analysed contain about 80,000 global variables, the variables on which
relational information is required are divided into packs – that is, sets that
potentially overlap. Relational information is only inferred within each pack.
This is important for scalability since the Octagon domain, like our TVPI
domain, stores information for each pair of variables and thus has a memory
footprint that is necessarily quadratic in the number of variables. In order
to improve upon the precision of the relatively weak Octagon domain, sym-
bolic propagation of variable values is used [131]. The ability to infer that no
floating-point overflow occurs is based on the assumption that the number
of iterations of the outermost control loop is bounded by a constant, namely
6 · 106. In order to achieve the required precision and scalability, the analyser
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is able to partition the set of traces at a particular program point; that is, it is
possible to track separate states for different values of a variable and to keep
states separate where control-flow edges join [123]. The latter can be used
to unroll loops, which is crucial for the kind of embedded code the analysis
targets, where loops often initialise variables in the first loop iteration. Arrays
that are of static size are either fully unfolded (each element is represented
in the analyser) or smashed (all elements are represented by one abstract el-
ement). The effect of integer calculations that exceed the range of the target
variable is either reported as erroneous or the wrapping that occurs in the
concrete program is made explicit, depending on the specification of the user.
Finding fixpoints of loops is guided by widening thresholds, which are val-
ues that indicate likely bounds on variables. All parameters regarding trace
partitioning, array handling, and widening thresholds can be communicated
to the analyser by using annotations in the source code. From the experience
of finding these parameters, heuristics have been devised that work well for
programs that have similar structures, thereby reducing the burden on the
user. The implementation of the Astrée analyser uses a configurable hierarchy
of modules that implement trace partitioning, track memory layout, etc., and
the various numeric domains [61]. This design facilitates the addition of new
domains and thereby the adaptation to new classes of programs.

1.7.2 SLAM and ESPX

The unsound PREfix tool [38] was one of the first tools deployed by Microsoft
in order to uncover faults in device drivers. The tool was eventually replaced
by SLAM [18], which was created at Microsoft Research and is now integrated
into the development process of Microsoft Windows. It is commercially avail-
able as part of Microsoft Developer Studio, where it serves to reveal program-
ming errors related to locking, handling of files, memory allocation, and other
temporal properties [20]. Using a simple specification language called Slic
to describe the effects of certain function calls, a tool called C2bp translates
the input C program into a Boolean program. This Boolean program is then
checked using the Bebop model checker [19]. Unless the model checker can
verify the properties that were described using the Slic specification, another
tool, called Newton, is run in order to refine the Boolean program using
the counterexample from Bebop. The idea is that repeated refinement of the
abstraction will eventually create a Boolean program that is precise enough
to prove the program correct. The abstraction done in C2bp is meant to be
sound but incorrectly handles memory accesses through pointers when they
denote overlapping memory regions. Furthermore, it is incorrectly assumed
that integer variables cannot wrap, although this issue is being addressed, as
pointed out in the talk of [52].

With respect to buffer overflows, Microsoft uses an approach similar
to SLAM in that a new specification language, SAL, was defined, with
which the programmer is able to annotate C programs. In order to aid the
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programmer in annotating source code, an unsound tool called SALinfer
can provide likely invariants, which the programmer can adapt. An inter-
procedural checker called ESPX checks the annotations and is sound if all
buffer operations are correctly annotated. To date, Microsoft developers have
inserted 400,000 annotations into the next version of Windows, of which
150,000 were inferred automatically [90]. This labour-intensive approach led
to the detection of 3,000 potential buffer overflows, which means that approx-
imately 100 annotations are needed to detect a single buffer overflow.

1.7.3 CCured

CCured is a pragmatic approach that combines static analysis with run-time
checks. The input C program is parsed using a front end written in O’Caml
that exhibits either the semantics of the GNU C compiler or that of Microsoft’s
Visual C compiler and translates to the so-called C Intermediate Language
(CIL) [137]. The intermediate representation is then analysed using dependent
types with the intent of proving most memory operations correct [136]. Any
pointer whose properties cannot be statically guaranteed is converted into a
fat pointer that includes the beginning and end of the buffer that the pointer
points to. The code is then transformed by adding run-time checks to all
memory accesses that the static analysis cannot guarantee to be safe. In order
to avoid dangling pointers caused by freeing dynamically allocated memory
regions too early, all calls to free are removed and a garbage collector [32] is
used. The resulting program is then translated back to C and compiled using
a normal C compiler. Recent work has addressed the task of verifying the
binary output with the invariants generated during the static analysis [94].

1.7.4 Other Approaches

A vast number of tools have been proposed that use heuristics to highlight
locations in the C source code that are likely to be erroneous. By using heuris-
tics, these tools are simpler than sound analysers but may miss faults. An im-
portant aspect of all unsound approaches is that their precisions are difficult
to compare. For sound approaches, it is sufficient to compare the number of
false positives. Unsound approaches, however, can to a certain degree trade
off the number of false positives with the number of missed bugs. Since the
number of missed bugs is not known, the comparison of the number of false
positives is mostly meaningless.

LClint [75] and its variants [115, 116] use lightweight annotations that
are added to the C programs to find buffer overflows and other faults. In
contrast, Wagner proposed a fully automatic buffer-overflow analysis based on
intervals [184], which, however, is not very precise. Dor et al. were the first to
analyse pointer accesses to string buffers using polyhedra [71]. However, their
work turned out to be unsound [167], which triggered their work on soundly
analysing C string functions aided by user annotations [72]. Ghosh et al.
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use fault injection to find buffer overflows; that is, a tool repeatedly creates
strings with the aim of overflowing a specified buffer in the stack. The process
is guided by inspecting the dynamic run-time behaviour of the program [77].
Haugh and Bishop claim that automatically verifying the absence of buffer
overflows is impossible. Their STOBO tool instruments a program to observe
program behaviour when run on normal input data. The inferred data are
then used to characterise possible overflow conditions [98]. Archer is a static
analysis for detecting memory access errors using a custom constraint solver
that can express linear relations between two variables [189]. The tool uses
heuristics on function names to infer relationships between function arguments
and return values. The authors observe that a major deficit of their analysis
is the inability to track nul positions. Eau Claire is another checker for buffer
overflows that uses theorem provers [45]. Elgaard et al. show how to find all
null pointer dereferences using a model checker [73]. Unfortunately, their
technique is only sound and complete on straight-line code. User annotations
are necessary to handle loops, in which case completeness is lost. Jones and
Kelly [108] augment programs with run-time information on buffer bounds.
Further afield is the analysis of format string vulnerabilities [162], where an
input string is passed to printf. The observation is that any percent character
in the first argument to printf determines how many arguments are read from
the stack. Thus, a program may be vulnerable if the user can pass an arbitrary
string as the first argument to printf. In practice, these vulnerabilities can
easily be found and removed syntactically by ensuring that the first argument
to printf is a constant.

There exists great interest in removing memory management faults, both
in academia and industry. Hence, this overview of related tools only includes
the most predominant tools that we became aware of during our research.
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A Semantics for C

The C programming language has evolved substantially since its inception and
repeatedly undergoes standardisation, the latest of these efforts resulting in
the C99 standard [51]. Defining the formal semantics of an evolving language
such as C is difficult and has given rise to a Ph.D. thesis in its own right [143].
Hence, for the sake of conciseness, the interpretation of the C standard is left
to the GNU C compiler, which translates the input program into a small in-
termediate language with well-defined semantics. While this approach ties the
validity of our analysis to a single compiler and platform, it not only allows
us to make some simplifying assumptions but also provides us with a way
to soundly analyse programs – like the one considered in our experimental
section – that do not strictly comply with any standard and whose exact se-
mantics are defined by the compiler. This is deemed to be no disadvantage, as
GNU C is available on most platforms and because a fully automatic analysis
can easily be rerun on all platforms of interest.

For conciseness, the analysis is not coupled directly to the intermediate
representation of the chosen compiler. Instead, this chapter details how it
is translated into a language called Core C that merely contains the basic
operations of the C language. After describing the Core C language and the
execution environment commonly found in current platforms such as Linux
or Microsoft Windows, we define the notion of correct memory management.
The chapter concludes by stating the concrete semantics of Core C from which
a collecting semantics is derived.

2.1 Core C

The static analyser presented in this book operates on a simplified version of C
called Core C. In fact, the pragmatics of Core C are closer to assembler than to
any high-level language in that variables are declared simply by stating their
size, whereas each expression in the program is explicitly typed. Furthermore,
the control flow is specified by a sequence of conditionals and jump targets at
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the end of each basic block. This simplistic structure allows a complete yet
concise definition of the semantics of Core C, thereby providing a foundation
for a sound static analysis.

Besides normative descriptions, the C standard [51] marks certain aspects
as implementation-defined, unspecified, or undefined. Most undefined behav-
iour is treated as erroneous in our analysis. Other aspects (such as sizes of
integers) are fixed by the compiler during the translation into Core C; some
carry over into the semantics of Core C. In summary, the following parameters
must be addressed:

integer and pointer sizes: The integer and pointer types of C are allowed
to have different sizes, depending on the underlying architecture. The C
compiler makes the actual sizes explicit in its intermediate representation.

signed arithmetic: There exist few architectures today that implement neg-
ative integers using an explicit sign bit in addition to an unsigned integer
(so-called sign magnitude) or an explicit sign bit in addition to a negated
unsigned integer (so-called one’s complement). Both approaches have two
representations for zero, the result of a rather cumbersome semantics.
The de facto standard for implementing signed integers is the two’s com-
plement representation, which allows the reuse of unsigned arithmetic
operations (if overflows are of no concern). However, two’s-complement
arithmetic requires a second set of comparison functions for signed inte-
gers, which was not available on earlier architectures. Since the GNU C
compiler can only be ported to architectures that use two’s-complement
arithmetic, the semantics of Core C assumes two’s-complement arithmetic,
too. We believe that this restriction is no obstacle in practice, and it seems
imprudent to develop an analysis for obsolete architectures.

signed right shifts: Closely related to the question of how signed integers are
implemented is the availability of a right-shift operation that preserves the
sign of a value. The intermediate representation of the GNU C compiler
makes the distinction between signed and unsigned right shifts explicit
and hence determines the semantics of the right-shift C operation.

rounding of integer division: The C standard caters to two different kinds of
rounding for integer division: rounding towards zero and rounding towards
minus infinity (truncating the result). Although division operations on
most architectures round towards zero, it is again the C compiler that
determines the semantics of C integer division.

invalid address 0: The memory address 0 (or NULL in C syntax, not to be
confused with the character nul) is reserved as a special tag in C. No
implementation may use this address for storing data. In practice, oper-
ating systems disallow any access to the first virtual memory page (which
includes address 0), thereby causing a segmentation fault each time the
memory address 0 is accessed. Our analysis is parameterised by the page
size of the target architecture and assumes that all valid memory lies
above the first page.
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alignment of data: Some architectures impose restrictions on accessing data
types that are larger than a single byte. Specifically, memory accesses
are usually required to be aligned; that is, the address of a datum must
be a multiple of the byte size of the datum. For example, 4-byte inte-
gers are often required to be stored at addresses that are multiples of 4.
While some architectures (such as Intel platforms) are able to perform
unaligned accesses, they require several accesses to memory incurs a per-
formance penalty. Other platforms, such as the PowerPC platform, raise
an exception on unaligned accesses of data, sometimes with the ability
to emulate the access in software. We assume that the programs to be
analysed run even on architectures, such as Sparc, where all memory ac-
cesses have to be aligned. While this assumption implies that our analysis
flags unaligned memory accesses as erroneous (even on Intel platforms),
it greatly simplifies the underlying memory model.

copying padded structures: The C compiler will automatically pad structures
with unused bytes to enforce certain alignment restrictions. According to
the C standard, an assignment from one structure to another does not have
to copy the padded areas between fields. However, for efficiency, most C
compilers copy the whole structure, and we require this behaviour for our
analysis.

endianness: Endianness denotes the way the bytes that comprise a larger in-
teger value are stored. Architectures are split between storing integers in
little-endian format (less significant bytes are stored at lower addresses)
or in big endian (more significant bytes are stored at lower addresses).
A C program is allowed to infer and exploit the endianness that the un-
derlying architecture implements. The endianness is a parameter of our
analysis, and a C program has to be reanalysed for a different endianness.

While the C compiler fixes all of the above implementation-specific para-
meters above, the semantics of our analysis varies with the pointer size and
the endianness of the architecture. To simplify the exposition, we assume that
the architecture has 32-bit pointers and uses big-endian byte ordering – a
valid assumption for the Intel IA-32 architecture, for example. The analy-
sis can easily be adapted to a different pointer size and endianness, such as
little-endian PowerPC and Sparc architectures.

By shifting the burden of defining the semantics of a C program to the
GNU C compiler, the intermediate language Core C of our analysis becomes
relatively simple. In the following grammar, we use 〈S〉 to denote a non-
terminal symbol S, [S] to denote an optional symbol, and (S)∗ to denote an
arbitrary sequence of S. In order to simplify the grammar, we use the syntactic
categories in Fig. 2.1 as terminal symbols.
For convenience, we define Label to be a finite set of tags and require l ∈ Label .
Given these definitions, Fig. 2.2 presents the grammar that defines the Core
C language L(〈Core C〉). The individual productions are explained below.
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category name meaning

v variable name
f function name
l program label

string string literal
n integral number literal

Fig. 2.1. Syntactic categories used in the Core C grammar.

〈CoreC〉 :: [〈Vars〉] (〈Stmt〉 ;)∗ 〈FDecl〉 (; 〈FDecl〉)∗ ;
〈Vars〉 :: var v : n (, v : n )∗ ;
〈FDecl〉 :: f ( [ v (, v )∗] ) [〈Vars〉] (Block)∗

〈Block〉 :: l : (〈Stmt〉 ;)∗ 〈Next〉
| l : f ( [ v . n (, v . n )∗] ) ; 〈Next〉
| l : *v ( [ v . n (, v . n )∗] ) ; 〈Next〉

〈Next〉 :: return ;
| jump l ;
| if 〈Type〉 v . n 〈Op〉 〈Expr〉 then jump l ; 〈Next〉

〈Op〉 :: < | ≤ | = | �= | ≥ | >
〈Expr〉 :: n | n * v . n + 〈Expr〉
〈Stmt〉 :: 〈Size〉 v . n = 〈Expr〉

| 〈Size〉 v → n = 〈Expr〉
| 〈Size〉 v . n = v → n
| 〈Size〉 v . n = 〈Type〉 v . n
| structured n v . n = v . n
| structured n v → n = v . n
| structured n v . n = v → n
| v . n = & f
| v . n = & v . n
| v = �stringId�
| l : v = malloc ( v . n )
| free ( v . n )
| [ 〈Type〉 〈Expr〉 =]
�string�( [ 〈Type〉 〈Expr〉 (, 〈Type〉 〈Expr〉)∗] )

〈Type〉 :: (uint | int) 〈Size〉
〈Size〉 :: 1 | 2 | 4 | 8

Fig. 2.2. The syntax of Core C.

A Core C program commences with an optional list of global variable
declarations and a sequence of statements to initialise them. In contrast to C,
variables are introduced by merely stating their size in bytes rather than by
specifying a type. A non-empty sequence of function declarations defines the
program. Each function declaration may have a list of variable declarations,
which has to include all function arguments. The body of a function is a
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sequence of blocks where each block is uniquely identified by a label l ∈ Label .
Each function call, either direct or via a pointer, constitutes a basic block in
itself. Each basic block is followed by a sequence of control-flow instructions:
that is, either a return, an unconditional jump, or a conditional jump followed
by yet another control-flow instruction. Functions that return a value in the
original C program are modified when translated to Core C by adding a
pointer parameter that points to the corresponding call-site variable, thereby
alleviating the need for return values.

The first three productions of 〈Stmt〉 correspond to the three basic
assignments that are necessary in a language with pointers. More compli-
cated pointer operations are broken down during translation. The notation
v . n denotes the nth byte of the memory region occupied by the variable v.
This notation corresponds to a typical access to a C ������. Furthermore, the
notation v → n accesses the memory region pointed to by v at the given byte
offset. Note that v → 0 is equivalent to ∗v in C. The productions of the gram-
mar are carefully chosen to match the more common cases of C programs; a
simpler production such as *v would not allow an access to a single field of
a structure in ∗v without introducing intermediate variables. To completely
specify the semantics of an access, assignment statements are preceded by a
size or type unless it is clear that the variable is a pointer – that is, a uint4.
For readability, we write sized types as one token; that is, the type of a pointer
is written as uint4. All variables in an assignment access the same number of
bytes given by 〈Size〉 except for the fourth production, which allows coercion
from one type to another. Here, we follow the C convention that the type of
the expression’s right-hand side determines whether or not sign extension is
used. The next three productions allow the assignment of whole structures;
that is, they copy the given number of bytes from one variable to another
without interpretation. The following production takes the address of a func-
tion or (a field of) a variable. The next production stores a constant string
with a terminating zero in the given array v. Note that this statement corre-
sponds to ���� v[] = "string" in C. The more common C string literals,
which are expressions in their own right, are translated into global, byte-sized
arrays that are initialised through this statement. At each occurrence of the
string literal, a variable containing the address of the global array is substi-
tuted. The parameters of the memory allocation functions malloc and free
are implicitly of type uint4. The last statement calls a primitive, required for
non-linear operators, for example. A translation of the introductory example
to Core C is shown in the appendix.

Core C programs are executed, just like their C counterparts, in a virtual
memory environment that provides an array of byte-wise accessible memory
locations. After introducing some basic notation in the next section, Sect. 2.3
formally defines this environment, which is then used to define the semantics
of Core C.
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2.2 Preliminaries

This section introduces basic notation for Boolean vectors and arithmetic. Let
B = {0, 1} denote the set of Booleans. A vector b = 〈bw−1, . . . b0〉 ∈ Bw is
interpreted as an unsigned integer by valw,uint(b) =

∑w−1
i=0 bi2i and as in-

teger by valw,int(b) = (
∑w−2

i=0 bi2i) − bw−12w−1. Conversely, binw : Z → Bw

converts an integer to the lower w bits of its Boolean representation. Formally,
binw(v) = b iff there exists b′ ∈ Bq such that val (q+w),int(b′‖b) = v, where
‖ denotes the concatenation of bit vectors. For instance, bin3(15) = 〈1, 1, 1〉
since val5,int(〈0, 1, 1, 1, 1〉) = 15. We write v instead of binw(v) if w is ob-
vious from the context. In order to distinguish calculations on Boolean vec-
tors from standard arithmetic, let +w, ∗w : Bw × Bw → Bw denote addition
and multiplication that truncate the result to the lower w bits, for instance
〈1, 1, 1, 1〉 + 4〈0, 0, 0, 1〉 = 〈0, 0, 0, 0〉. Note that the signedness of the argu-
ments of +w and ∗w does not affect the results of these operations.

Core C programs operate in a virtual memory environment that we for-
malise as a sequence of bytes. Let B = B8 denote the set of bytes and
Σ = B232

all states of 4 GB that a program on a 32-bit architecture can
take on. Let σ ∈ Σ denote a given memory state of a program, and define
σs : [0, 232 − 1] → Bs to denote a read access at the given byte offset, where
s ∈ {1, 2, 4, 8} is the number of bytes to be read. All accesses σs(a) must
be aligned; that is, the address a must be divisible by s. We further assume
a little-endian architecture, which requires that σ2s(a) = σs(a + s)‖σs(a).
A write operation is formalised as a substitution σ[a s�→ v], where a ∈ [0, 232−1]
and v ∈ B8s. The resulting store σ′ = σ[a s�→ v] satisfies σ′s(a) = v, and fur-
thermore σ′1(b) = σ1(b) for all addresses b /∈ {a, . . . a+s−1}. The little-endian
architecture imposes a similar invariant on the write operation. The notation
σ[a + i

1�→ σ1(b + i)]n−1
i=0 copies n bytes from address b to a.

2.3 The Environment

For the sake of defining the concrete semantics of a program P ∈ L(CoreC),
let V g denote the global variables of P and let Sg its initialisation state-
ments. Moreover, let f1 . . . fn be the functions that constitute P and define
lookupFunc(fi) = 〈P fi , V fi , lfi〉 for each function. Here, P fi denotes the for-
mal parameters of fi, V fi , the locally declared variables, and lfi the label of the
first basic block of fi. We use lookupBlock and lookupNext to map a block label
l ∈ Label to the statement sequence or function call of a basic block and to the
control-flow instructions, respectively. For example, given a basic block of the
form l : s1; . . . sn; return, the functions return lookupBlock(l) = l : s1; . . . sn;
and lookupNext(l) =return.

Every parameter of a function also has to be declared as a local variable
of that function; that is, P fi ⊆ V fi . Hence, the set of all declared variables



2.3 The Environment 29

of P is M := V g ∪
⋃n

i=1 V fi . Let size : M → N represent the declared size
of each variable in bytes. Note that the C compiler accepts (and generates)
Boolean variables, which are translated into uint8. They contain 0 to denote
false and one to denote true. The association between a variable v ∈ V fi

of the current function fi and its address a in memory is given through the
pair 〈v, a〉 ∈ M × [0, 232 − 1]. A set of these pairs A ∈ P(M× [0, 232 − 1])
assigns addresses to all local variables of a function. To describe the concrete
semantics of a function, this set is paired with a label l ∈ Label to form a
stack frame Θ = Label × P(M× [0, 232 − 1]). The label l in a given stack
frame c = 〈l, A〉 ∈ Θ denotes the basic block of the call site, where execution
continues on return. The call stack at a specific point in execution is given
by θ ∈ Θ∗, where Θ∗ = {c0 · · · cn | n ∈ N, ci ∈ Θ} is the set of all sequences
of stack frames. Given a call stack θ = c0 · c1 · · · cs, the frame cs corresponds
to the current function, while the address map A in the first frame c0 =
〈l, A〉 assigns addresses to all globally declared variables. Note that a variable
can only occur once in each stack frame but several times (with different
addresses) in a given stack, namely during a recursive function call. Thus,
at any given point in the execution of a program, the only accessible entities
are functions, global variables (in c0), and variables of the current function
(in cs). This is reflected in the symbol table, which is a (partial) function
addrθ : ({f1, . . . fn} ∪M) → [0, 232 − 1] that assigns a fixed address to each
function fi and an address to all variables of the contexts cs and c0 of θ. Note
that it is possible to access variables in the inner stack frames by passing their
addresses as parameters to callees.

During execution of a C program, further memory can be allocated on
the heap. These dynamically allocated memory regions are characterised by
Δ = P(Label × [0, 232 − 1]× N), specifically, let δ ⊆ Δ denote the set of cur-
rently allocated memory regions. Then each region 〈l, a, s〉 ∈ δ that has been
allocated at position l in the program occupies s ∈ N bytes of memory start-
ing at address a ∈ [0, 232 − 1]. The way that memory on the heap is allocated
guarantees that a + s ∈ [0, 232 − 1]; that is, a dynamically allocated memory
region never exceeds the virtual state space. Note that several memory regions
may be allocated at the same program position l. In fact, the allocation site
l is only tracked to facilitate the static analysis of dynamic memory.

In order to allocate a new region of memory, it is necessary to define what
regions are already in use. Given a call stack θ and the set of dynamically
allocated memory regions δ, we define the set of used addresses as used(θ, δ),
which is the union of the following sets of addresses:

• {a, . . . a + (size(v)− 1)} for all 〈l, A〉 ∈ θ such that 〈v, a〉 ∈ A
• {a, . . . a + (s− 1)} for all 〈l, a, s〉 ∈ Δ

As mentioned before, size(v) denotes the size of the declared variable
v ∈M. Besides program-specific address ranges, a few memory regions are
also reserved by the execution environment; that is, they may not be accessed
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by the program itself. Let reservedθ ⊆ [0, 232 − 1] denote these reserved ad-
dresses, which are comprised of the following regions:

• A program may not access the regions that store the program itself. Hence,
for each function fi with a = addr∅(fi) and that occupies s bytes, the range
{a, . . . a + (s− 1)} is reserved.

• The operating system disallows accesses to the first memory page, which
for our chosen architecture resides at addresses {0, . . . 4095}. This ensures
that the processor automatically stops programs that dereference NULL
pointers.

• At the high end, one gigabyte of memory is reserved for the operating
system, and no pointer to this region is ever passed to the application
program. (This is true for current versions of all major 32-bit operating
systems.) Hence, the address range [(231 + 230), 232− 1] is not available to
the program.

• Any address in the current sequence of stack frames θ ∈ Θ∗ that does not
serve to store program variables may not be accessed from the program.
Examples of such locations include the return addresses of functions. These
addresses are in reservedθ which is therefore parameterised by the stack θ.

• The locations and sizes of each dynamically allocated memory region δ ∈ Δ
are stored in a region in reservedθ of fixed size. Access to this region is
only permitted by the primitives malloc and free and not by the program
itself.

Given the information on memory regions that are reserved and those
that are used for calculations by the program, it is now possible to define how
new memory is allocated. For the sake of being independent of a particular
machine, no actual algorithm for finding an unused memory region is given. We
merely require the existence of a function freshδ

θ : N → [0, 232−1] that retrieves
free memory to fulfill the request for dynamically allocated memory or a new
stack frame. Specifically, a = freshδ

θ(s) allocates s bytes at memory address a
such that {a, . . . a + (s− 1)} ∩ (used(θ, δ)∪ reservedθ) = ∅. If no such address
exists, freshδ

θ returns 0. Note that the generality of the allocation functions
reflects the freedom of the compiler and the run-time system to choose how
to lay out variables in memory. This reflects one of the few obligations on the
programmer in that no assumption may be made on the absolute or relative
positioning of either stack- or heap-allocated variables. Given the functions
used and freshδ

θ, it is now possible to state when all operations of a Core C
program are correct with respect to memory management.

Definition 1. A program P ∈ L(〈CoreC〉) exhibits correct memory manage-
ment in the state 〈σ, θ, δ〉 if in any read access σs(a) and in any write access
σ[a s�→ n] the set inclusion {a, . . . a + (s − 1)} ⊆ used(θ, δ) holds for any
implementation of freshδ

θ that adheres to the specification above.

Conversely, a Core C program exhibits incorrect memory management
whenever it accesses an address that is currently unused or in reservedθ.
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While most accesses to free memory regions can be intercepted by the
virtual memory system by disallowing access to the corresponding pages, most
regions in reservedθ are accessed by the C run-time during each function
call and return, which makes protection difficult. Furthermore, these regions
are too small to be protected at the hardware level. In order to illustrate
this, consider the return address in the stack frame shown in Fig. 1.1, which
is embedded between function arguments and local variables. A hardware
protection against buffer-overflow vulnerabilities would require that a write
access to the few bytes in reservedθ that constitute the return address be
disallowed during the execution of the function. Furthermore, the location of
the return address must be writable before the function is entered.

A recent reaction to the severity of buffer-overflow vulnerabilities resulted
in protecting the whole stack from being executable; that is, disallowing the
processor from fetching code from the pages that constitute the stack. How-
ever, certain run-time environments, such as the Java Virtual Machine, require
an executable stack. For this reason, operating systems must provide a way
to circumvent this protection. For instance, in Windows Vista it is possible
to make the stack executable again by calling an undocumented function in
ntdll.dll, an essential dynamic library that is loaded with every program.
An attacker who was previously able to overwrite the return address of a
function with the address of the stack-allocated buffer now merely overwrites
the return address with the function to disable stack execution. The address
of the code in the buffer is then positioned such that upon return the code
in the buffer is executed [174]. Thus, preventing the execution of code in the
stack segment is not sufficient in practice to prevent buffer-overflow attacks.

At the software level, Vista makes this attack harder by using “address
space layout randomization”; that is, it loads the ntdll.dll library at one
of 256 different locations in memory, thereby decreasing the chances that the
attacker picks the correct address of the function that enables the stack exe-
cution. On the downside, loading dynamic libraries at different addresses can
carry a performance penalty. For instance, the Mac OS X operating system
minimises application start-up time by a process called pre-binding, which
fixes the address of each dynamic library to an address that does not over-
lap with any other dynamic library used by any single application.1 As a
consequence, using dynamic libraries at run-time requires no relocation, and
temporarily unused pages containing library code can simply be discarded
rather than being swapped out to disk, thereby increasing the responsiveness
of the overall system. Loading libraries at randomised addresses would make
this performance trick impossible.

Other compile-time program transformations have been proposed to make
access from the C program to these reserved regions less likely [22,63,108,183].
These transformations rearrange the order of local variables and insert array
bound checks in cases where it is clear that a function-local buffer is accessed.
1 This is called “optimising system performance” when installing new software.
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These techniques generally incur a run-time overhead and only reduce the
likelihood of a successful attack, which renders them far from ideal. For in-
stance, Windows Vista uses stack cookies, which are inserted by the compiler
whenever a function contains a stack-allocated array. A stack cookie is an in-
teger placed between the array and the return address that is set to a random
number on function entry. Before the function exists, it is checked that this
integer contains the same number, which makes it very likely that the array
was not written beyond its bounds. One downside of all of the techniques
presented is that a prevented attack still aborts a running dæmon or service
of a server, which opens up the possibility of a denial-of-service attack.

Attacks that overwrite administrative information on dynamically allo-
cated memory regions are more difficult and therefore less widespread. Their
strategy often relies on the wrapping of integer variables that feed into alloca-
tion functions such as malloc. By allocating a buffer that is smaller than what
the program assumes, it might be possible to overwrite administrative infor-
mation that is stored beyond the end of the allocated memory region. Again,
protecting administrative information in the memory region that surrounds
dynamically allocated memory from accesses by the C program is difficult.

Hence, a more laudable goal is to remove all buffer-overflow vulnerabilities
from a program by ensuring that it exhibits correct memory management. The
definition of correct memory management is expressed in terms of accesses to
the store σ. The next section introduces the semantics of Core C programs in
order to define how these memory accesses are carried out.

2.4 Concrete Semantics

Given the memory model from the last section, we now embark on describing
how a Core C program transforms the concrete state 〈σ, θ, δ〉 ∈ Σ ×Θ∗ ×Δ.
Specifically, Figs. 2.3a and 2.3b define a set of concrete transfer functions of
the form [[ · ]]�N for different productions N , namely:

[[ · ]]�Block : (Σ ×Θ∗ ×Δ) → (Σ ×Θ∗ ×Δ) specifies how a basic block is exe-
cuted. A basic block contains either a sequence of statements or a direct
or indirect function call.

[[ · ]]�Next : (Σ ×Θ∗ ×Δ) → (Σ ×Θ∗ ×Δ) evaluates conditionals and executes
the indicated basic block if the condition holds.

[[ · ]]�Stmt : (Σ ×Θ∗ ×Δ) → (Σ ×Θ∗ ×Δ) defines the semantics of a Core C
statement.

[[ · ]]�,sExpr : (Σ ×Θ∗ ×Δ) → Bs evaluates the value of a linear expression, yield-
ing a bit vector of s bits. All occurring variables are accessed as variables
of width s bits.

Here, the � superscript indicates that these functions define the con-
crete (or “natural”) semantics. Before describing these functions in detail,
we define how execution of a program starts. Let P = V gs0; . . . sn; F be the
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program that is to be run. Here, V g denotes the declaration of global variables,
s0; . . . sn; the initialisation statements and F a sequence of function definitions
including the function main where execution starts. The semantics of this
Core C program is defined by

[[ main() ]]�Block([[ sn ]]�Stmt(. . . [[ s0 ]]�Stmt〈σinit , 〈l, Ag〉, ∅〉 . . .))

where σinit is an arbitrary store and 〈l, Ag〉 is the first stack frame. Here,
l ∈ Label is a label that does not occur in the program and Ag associates
global variables with memory regions as follows. Given the declaration of
global variables V g = v1 : s1; . . . vn : sn;, let Ag = An, A0 = ∅, and Ai =
Ai−1 ∪ {〈vi, fresh∅

〈l,Ai−1〉(si)〉}. Execution stops after the return statement is
evaluated, and 〈l, Ag〉 is the current context. While the main function takes no
argument in the invocation above, it is possible to add these for any particular
set of program arguments by adding statements to the initialisation sequence.
A return value can be added in a similar way.

Figure 2.3a defines the semantics for basic blocks, control flow, function
calls, and simple assignments. The first rule specifies how a sequence of state-
ments s1; . . . sn; transforms the initial state 〈σ, θ, δ〉, which is then propagated
to the [[ · ]]�Next function, where the next basic block is executed. In contrast,
a function call will execute the first basic block lt of the called function fi

without ever evaluating the following control-flow instructions. The parame-
ters p1, . . . pn are assigned as if they were structures; the underlying memory
regions are simply copied. This step requires that all locally declared variables
(which include parameters) be allocated in memory, which is performed by
the recursive definition of the list A. The last variant of a basic block is the
indirect function call. Note that this definition is partial, as there might not be
a function with the given address val32,uint(σ4(addrθ(v))). The analysis pre-
sented later will flag an error every time the concrete semantics is unspecified.

Another partial definition is that of the return keyword in that it requires
at least one frame on the stack. Note that the allocation map A is removed
when a function returns, thereby effectively freeing all local variables in that
frame since the lookup function for variables addrθ is parameterised by the
current stack.

Similarly to the jump instruction, which simply executes the denoted basic
block (which has to be part of the current function), the conditional will
branch similarly to the jump instruction if the condition is met; otherwise, it
will evaluate the next control-flow instruction. The evaluation of the condition
draws upon several new constructs. Every access to a variable may have a byte
offset to facilitate accesses to structures. Hence, the access v.o will read the
memory at addrθ(v)+o. The resulting binary value that is read from memory,
namely σs(addrθ(v) + o), is interpreted as an integral value by val8s,t(·), and
the normal relational operators can be applied. Note that the signedness of
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Basic Blocks.

[[ l : s1; . . . sn; ]]�Block〈σ, θ, δ〉 =

[[ lookupNext(l) ]]�Next([[ sn ]]�Stmt(. . . ([[ s1 ]]�Stmt〈σ, θ, δ〉) . . .))

[[ l : fi(a1, . . . an); ]]�Block〈σ, θ, δ〉 = [[ lookupBlock(lt) ]]�Block〈σ′, θ′, Δ′〉
where 〈 〈p1, . . . pn〉, 〈v1, . . . vm〉, lt〉 = lookupFunc(fi)

s1 = size(p1), . . . sn = size(pn)

A = Am, A0 = ∅, Ai = {〈vi, fresh
δ
θ·〈l,Ai−1〉(si)〉} ∪ Ai−1

if ∃〈v, 0〉 ∈ Am then stop due to stack overflow

〈σ′, θ′, Δ′〉 = [[ structure sn pn.0 = an; ]]�Stmt(. . . (

[[ structure s1 p1.0 = a1 ]]�Stmt〈σ, θ · 〈l, A〉, Δ〉
) . . .)

[[ l : ∗v(a1, . . . an); ]]�Block〈σ, θ, δ〉 =

[[ l : fi(a1, . . . an); ]]�Block〈σ, θ, δ〉 where addrθ(fi) = val32,uint(σ4(addrθ(v)))

Control Flow.

[[ return ]]�Next〈σ, θ · 〈l, A〉, Δ〉 = [[ lookupNext(l) ]]�Next〈σ, θ, δ〉

[[ jump l ]]�Next〈σ, θ, δ〉 = [[ lookupBlock(l) ]]�Block〈σ, θ, δ〉

[[ if v.o t s op exp then jump l ; n ]]�Next〈σ, θ, δ〉 =⎧⎨
⎩

[[ lookupBlock(l) ]]�Block〈σ, θ, δ〉
if val8s,t(σs(addrθ(v) + o)) op val8s,t([[ exp ]]�,s

Expr〈σ, θ, δ〉)
[[ nxt ]]�Next〈σ, θ, δ〉 otherwise

Expressions.

[[ n ]]�,s
Expr〈σ, θ, δ〉 = bin8s(n)

[[ n ∗ v.o + e ]]�,s
Expr〈σ, θ, δ〉 =

(
bin8s(n) ∗8s σs(addrθ(v) + o)

)
+8s [[ e ]]�,s

Expr

Assignment.

[[ s v.o = exp ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = σ[addrθ(v) + o

s
→ [[ exp ]]�,s
Expr〈σ, θ, δ〉]

[[ s v → o = exp ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = σ[val32,uint(σ4(addrθ(v))) + o

s
→ [[ exp ]]�,s
Expr〈σ, θ, δ〉]

[[ s v1.o1 = v2 → o2 ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = σ[addrθ(v) + o

s
→ σs(val32,uint(σ4(addrθ(v))) + o)]

Fig. 2.3a. Concrete semantics of Core C: basic blocks, control flow, and assignments.
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Assignment of Structures.

[[ structure s v1.o1 = v2.o2 ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = σ[addrθ(v1) + o1 + i

1
→ σ1(addrθ(v2) + o2 + i)]s−1
i=0

[[ structure s v1 → o1 = v2.o2 ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = σ[val32,uint(σ4(addrθ(v1))) + o1 + i

1
→ σ1(addrθ(v1) + o2 + i)]s−1
i=0

[[ structure s v1.o1 = v2 → o2 ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = σ[addrθ(v) + o1 + i

1
→ σ1(val32,uint(σ4(addrθ(v))) + o2 + i)]s−1
i=0

Type Casts.

[[ s1 v1.o1 = t s2 v2.o2 ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = σ[addrθ(v1) + o1

s1
→ bin8s1(val8s2,t(σs2(addrθ(v2) + o2)))]

Address-Of Operators.

[[ v1.o1 = &v2.o2 ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = σ[addrθ(v1) + o1

4
→ bin32(addrθ(v2) + o2)]

[[ v.o = &f ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = σ[addrθ(v) + o

4
→ bin32(addrθ(f))]

String Constants.

[[ v = "c0c1 . . . ck−1" ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ〉
where σ′ = (σ[addrθ(v) + i

1
→ ci ]k−1
i=0 )[addrθ(v) + k

1
→ 0]

Dynamically Allocated Memory.

[[ l : v1 =malloc(v2) ]]�Stmt〈σ, θ, δ〉 = 〈σ′, θ, δ′〉
where s = val32,uint(σ4(addrθ(v2)))

a = freshδ
θ(s)

δ′ = if a = 0 then δ else δ ∪ {〈l, a, s〉}
σ′ = σ[addrθ(v1)

4
→ bin32(a)]

[[ free(v) ]]�Stmt〈σ, θ, δ〉 = 〈σ, θ, δ′〉
where a = val32,uint(σ4(addrθ(v)))

δ′ =

{
δ if a = 0
δ \ {〈l, a, s〉} if ∃s ∈ N, l ∈ Label such that 〈l, a, s〉 ∈ δ

Fig. 2.3b. Concrete semantics of Core C: statements and primitives for dynamically
allocated memory. The notation s v specifies the size s of the variable v; t s v specifies
type t and size s of the variable v.
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a type can influence the outcome of a comparison and that converting the
binary vectors to integer values makes this difference explicit.

The conditional involves the evaluation of a linear expression. This seman-
tic action is defined next and is parameterised by the width s of the result in
bytes. Interestingly, the sign of the resulting type when accessing the under-
lying memory is irrelevant since the results modulo 28s are the same.

Linear expressions are also allowed in assignment statements. In the first
case, the value of an expression exp is evaluated in the current state and the
result is written to the address of v with the displacement o added. Assigning
to a pointed-to value is similar, except the result is written to the address
contained in the variable rather than the address of the variable itself. Note
that the fact that pointers are 32 bits is made explicit here in the access
σ4(addrθ(v)). This 32-bit-wide vector is converted to a value in [0, 232 − 1]
by val32,uint(·). The third assignment transfers a value pointed to by v2 to
the left-hand side. Note that C statements of the form *x = *y have to be
broken down into two statements, using an intermediate variable to store the
contents of *y.

Figure 2.3b defines the evaluation of more complex Core C statements.
An interesting observation about the semantics of C is that the language
implementation must be able to copy whole regions of memory, which is not
an operation that is directly available to the programmer. For example, it is
not possible to assign one fixed-sized array to another; however, it is possible
when these arrays are wrapped in a C ������. Due to this oddity, the three
principal ways of assignment have to be reimplemented for memory regions,
with the difference that the right-hand side can only be a simple variable
(rather than an expression).

A consequence of the ad hoc overloading of arithmetic operations is that
the conversion between different-sized integers is a core operation of C. Note
that the rule for type casts cannot be reformulated by accessing a memory
region with a different size or signedness. The reason for this is the necessity of
doing sign extension on signed integers and zero padding for unsigned integers.
These adjustments happen implicitly when the read value of type t2 and size
s2 is converted to an integer before the conversion back to a Boolean vector
of size s1 is applied using bins1(·).

Taking the address of a variable or a function merely requires the conver-
sion of the address to a 32-bit Boolean vector and thus introduces no novel
notation. Assigning a string to a memory region is a simple byte-copying loop
as in structure assignment, except for the final zero byte, which is implicit in
the string constant. Thus, the size of the variable that is assigned to has to
be of size k + 1 for a string of k letters.

The last two functions are the primitives for allocating and freeing memory
on the heap. The malloc function stores the newly allocated region in δ′ (if
sufficient memory is available). The free function is partial in that it will not
proceed if its argument does not correspond to the beginning of a previously
allocated memory region. The analysis will flag such a situation as erroneous.
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<,<=,==,!=,>=,> relational expressions
&,|,^,~ bit-wise expressions
&&,||,! logical expressions
<<,>> bit-shift expressions
%,/ integer division and modulus expressions

Fig. 2.4. Primitives of C whose implementation is omitted.

This concludes the discussion of the Core C language constructs. While
a full analysis requires other C operations and primitive functions, we omit
their presentation since their implementations are merely technical and thus
would not add to the Core C semantics already presented . For the sake of
completeness, Fig. 2.4 lists the primitives of C that are necessary to cover the
full C language without libraries.

The concrete semantics presented so far serves as a reference for specifying
the abstract semantics that defines the actual analysis. In order to convey
the underlying ideas and to motivate the abstract semantics, it is useful to
summarise several runs of a concrete program, which is the topic of the next
section.

2.5 Collecting Semantics

The single-step semantics presented in the last section describes how a single
state is modified by executing a Core C statement. By operating on a single
state at a time, primitives that read data from the operating system can only
return a single value, reflecting one specific run of the program. Inferring a
property that holds for all possible runs of a program therefore requires a
way to define a primitive that can return all possible inputs. To this end,
we lift the single-step semantics from transforming a single memory state to
transforming sets of memory states. This enables input primitives to map
a single memory state to many memory states, one for each possible input.
Allowing input primitives to return all possible values can be seen as a first
abstraction in that it disregards all input data. Indeed, it enables the definition
of the collecting semantics of a program – that is, the set of all states that
are possible at any given program point. Given the collecting semantics, the
question of whether a program exhibits correct memory management on all
inputs reduces to inspecting the inferred states. While this is not a practical
approach in general, it serves to illustrate the idea of a static analysis that
infers an abstract state for each program point. In particular, each abstract
state summarises a set of concrete states, and hence calculating the set of all
possible concrete states is similar to calculating a single abstract state.

In order to lift the semantic equations of Core C statements to sets of
states, define Σ = P(Σ ×Θ∗ ×Δ) to be the set of all sets of concrete states.
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Note that the cardinality of Σ is finite since Σ is finite and any θ ∈ Θ∗ and
δ ∈ Δ can be encoded in Σ at the locations reservedθ that were set aside for
this purpose. Thus, using explicit triples 〈σ, θ, δ〉 as opposed to embedding θ
and δ into the current state σ ∈ Σ is a mere convenience. The actual lifting
from a state 〈σ, θ, δ〉 to a set of states σ ∈ Σ is defined for each N =〈Block〉,
〈Next〉, 〈Stmt〉, 〈Expr〉 as follows:

[[ s ]]�Nσ = {[[ s ]]�N〈σ, θ, δ〉 | 〈σ, θ, δ〉 ∈ σ

[[ s ]]�N〈σ, θ, δ〉 is defined}

Here, we reuse the notation of a transfer function on a single state [[ s ]]�N for
the transfer function on a set of states. Note that on some states the results of
the transfer functions are undefined. Undefinedness in the concrete semantics
indicates an error condition and is similar to the C notion of “undefined
behaviour” [51]. In the context of the concrete semantics presented so far, the
following erroneous conditions lead to undefined behaviour:

illegal memory accesses: Any read access σs(a) and any write access σ[a s�→ n]
where a /∈ [0, 232 − 1] constitutes an illegal memory access. Note that an
access for which the inclusion {a, . . . a + (s − 1)} ⊆ used(θ, δ) does not
hold is actually well defined; however, any such access will be flagged as
incorrect by the analysis.

calling an invalid function: Whenever a pointer p is dereferenced in order to
call a function, the address stored in the pointer must be the result of
an address-of function operation such as p=&f; where f is a function. No
offset may be added to p.

jumping out of a function: If a jump instruction specifies a label outside the
current function, the execution continues with a mismatched stack. In par-
ticular, the addrθ function may be undefined for certain program variables.
Note that C allows cross-function jumps through the setjmp and longjmp
functions. For presentational purposes, the semantics of the jump instruc-
tion does not cater to these since a formal specification is more technical
than insightful.

freeing memory that is not allocated: Calling free with a pointer that is nei-
ther NULL nor denotes the beginning of a dynamically allocated memory
block causes undefined behaviour in C. In particular, this case occurs if
the same pointer is freed twice, which is a mistake in C.

overflowing the stack: Allocating memory on the stack using freshδ
θ may find

that no more memory is available. In this case, the program terminates.

Undefined behaviour is excluded from the resulting set of states because we
assume that execution stops as soon as an erroneous condition occurs. The
alternative to the assumption that the program aborts is to explicitly state
how the state space develops when a C program exhibits undefined behaviour.
Such an approach, however, is not only very implementation dependent but
also has little merit in that such a trace is irrelevant to a static analysis that
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1 �������� <stdio.h>

2
3 	
�� main(	
��) {

4 ��� ch;

5 ����
��� ��� lines;

6 lines =0;

7 ����� (1) {

8 ch = fgetc(stdin);

9 �� (ch==EOF) �����;

10 �� (ch==’\n’) lines ++;

11 };

12 printf("%u�lines\n", lines );

13 };
printf
(...)

ch=fgetc(stdin)

ch==EOF

lines++

ch=='\n'

+

lines=0

yes

no

yes

no

A

B
I

G
C

D

E

F

H

Fig. 2.5. Example C program that counts the number of newlines encountered on
stdin. The corresponding control flow graph is decorated with nine edges A, . . . I,
for which the collecting semantics describes the possible states σA, . . . σI .

is designed to prove that a program does not exhibit undefined behaviour at
run-time. The drawback of expressing run-time errors as undefined behaviour
is that a proof of correctness has to ensure that each application of a concrete
function is well defined in order not to inadvertently ignore a run-time error.

Given the set of transfer functions on sets of states, it is now easy to
define primitives that retrieve input from the operating system. For instance,
consider the function fgetc(FILE *stream) that retrieves a single character
from the given file stream and returns a C ��� containing either EOF (which is
a macro defined as −1) or a value 0 . . . 255, depending on the character read.
The corresponding Core C primitive takes a pointer parameter res through
which the result is written and the stream parameter stream, which is ignored:

[[ "fgetc"(uint4 res,uint4 stream) ]]�Stmtσ =

{〈σ[val32,uint(σ4(addrθ(res)))
4�→ i], θ, δ〉 | 〈σ, θ, δ〉 ∈ σ, i ∈ [−1, 255]}

Here, val32,uint(σ4(addrθ(res))) denotes the content of res; that is, the
address to which the result is written. For each input state 〈σ, θ, δ〉 ∈ σ, the
primitive creates 257 new states, namely one state for each possible return
value i ∈ [−1, 255], where −1 denotes the EOF value and 0, . . . 255 denotes the
value of the character retrieved. Given this function, consider calculating the
collecting semantics of the line counting program on the left of Fig. 2.5.

The corresponding flow graph on the right possesses nine edges A, . . . I.
Each edge has one possible set of states, namely σA, . . . σI , whose definitions
can be derived by translating the C program into Core C and applying the
concrete semantics for each statement. For brevity, we only show the result in
the form of the semantic equations lifted to sets of states. Since the stack θ
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does not change within the function main, we use l as the memory location of
lines rather than addrθ(lines); similarly, let c denote the address of ch.

σB = {〈σ[l 4�→ 0], θ, δ〉 | 〈σ, θ, δ〉 ∈ σA}
σC = σB ∪ σI ∪ σG

σD = {〈σ[c 4�→ i], θ, δ〉 | 〈σ, θ, δ〉 ∈ σC , i ∈ [−1, 255]}
σE = {〈σ, θ, δ〉 | σ4(c) = bin32(−1) ∧ 〈σ, θ, δ〉 ∈ σD}
σF = {〈σ, θ, δ〉 | σ4(c) �= bin32(−1) ∧ 〈σ, θ, δ〉 ∈ σD}
σG = {〈σ, θ, δ〉 | σ4(c) �= bin32(10) ∧ 〈σ, θ, δ〉 ∈ σF }
σH = {〈σ, θ, δ〉 | σ4(c) = bin32(10) ∧ 〈σ, θ, δ〉 ∈ σF }
σI = {〈σ[l 4�→ (σ4(l) +32 bin32(1))], θ, δ〉 | 〈σ, θ, δ〉 ∈ σH}

The solution to the equation system, which characterises all possible memory
states of the program, depends on the initial states in σA. In general, these
states are defined by executing the initialisation statements of a program,
starting on the set of all possible memory states Σ and the empty stack and
an empty set of dynamically allocated memory regions. Thus define

σA = [[ sn ]]�Stmt(. . . [[ s0 ]]�Stmt{〈σ, 〈l, Ag〉, ∅〉 | σ ∈ Σ} . . .)

where s0, . . . sn are the initialisation statements of the Core C program and
Ag maps globally defined variables to addresses in memory. The definition
above resembles the one described in Sect. 2.4 except that it is cast in terms
of sets rather than a single memory state. In particular, we choose all possible
states σ ∈ Σ as the starting state, which ensures that any invocation of
the program, which starts on some random memory state, is included in the
collecting semantics.

A constructive way to infer a solution to the equation system above is
a fixpoint calculation. That is, we start off with σB = · · · = σI = ∅ and
apply any of the equations above and augment the set of states σA, . . . σI

with the results until no more changes arise. For example, given a new set
σA, a new value can be calculated for σB . Since the actual set of σB is too
large to explicitly write out, we will merely give a description of the set.
Specifically, we only present the possible contents of the memory locations
σ4(l) = xl and σ4(c) = xc in the form of tuples 〈xl, xc〉. For instance, the
result of evaluating the first equation σB = {〈σ[l 4�→ 0], θ, δ〉 | 〈σ, θ, δ〉 ∈ σA}
is written as 〈0,−231〉, . . . 〈0, 231 − 1〉. New state sets for an edge are derived
by evaluating its equation with the most recent state sets of other edges, a
strategy also known as Gauss-Seidel iteration [55, 58]. State sets that have
stabilised are marked with a star on the left.

∗ σB = 〈0,−231〉, . . . 〈0, 231 − 1〉
σC = 〈0,−231〉, . . . 〈0, 231 − 1〉
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σD = 〈0,−1〉, . . . 〈0, 255〉
σE = 〈0,−1〉
σF = 〈0, 0〉, . . . 〈0, 255〉
σG = 〈0, 0〉, . . . 〈0, 9〉, 〈0, 11〉, . . . 〈0, 255〉
σH = 〈0, 10〉
σI = 〈1, 10〉
σC = 〈0,−231〉, . . . 〈0, 231 − 1〉, 〈1, 10〉
σD = 〈0,−1〉, . . . 〈0, 255〉, 〈1,−1〉, . . . 〈1, 255〉

At this point, the states σE , . . . σH are updated in sequence, resulting in
states identical to those above except that all states are duplicated for the
case σ4(l) = 1. This leads to the new state at edges I and C:

σI = 〈1, 10〉, 〈2, 10〉
σC = 〈0,−231〉, . . . 〈0, 231 − 1〉, 〈1,−231〉, . . . 〈1, 231 − 1〉, 〈2, 10〉

After another loop iteration, a new range of tuples 〈2,−231〉, . . . 〈2, 231−1〉
is added. We characterise the states C more concisely as follows:

σC = 〈0,−231〉, . . . 〈2, 231 − 1〉, 〈3, 10〉

More valuations for σ4(l) are added until all possible values for the variable
lines are exhausted. The calculation finishes as follows:

σC = 〈0,−231〉, . . . 〈232 − 2, 231 − 1〉, 〈232 − 1, 10〉
∗ σD = 〈0,−1〉, . . .〈0, 255〉,

〈1,−1〉, . . .〈1, 255〉,
...

〈232 − 1,−1〉, . . .〈232 − 1, 255〉
∗ σE = 〈0,−1〉, . . . 〈232 − 1,−1〉
∗ σF = 〈0, 0〉, . . .〈0, 255〉,

〈1, 0〉, . . .〈1, 255〉,
...

〈232 − 1, 0〉, . . .〈232 − 1, 255〉
σG = 〈0, 0〉, . . .〈0, 9〉,

〈1, 0〉, . . .〈1, 9〉,
...

〈232 − 1, 0〉, . . .〈232 − 1, 9〉,

〈0, 11〉, . . .〈0, 255〉,
〈1, 11〉, . . .〈1, 255〉,

...
〈232 − 1, 11〉, . . .〈232 − 1, 255〉

∗ σH = 〈0, 10〉, . . . 〈232 − 1, 10〉
∗ σI = 〈0, 10〉, . . . 〈232 − 1, 10〉
∗ σC = 〈0,−231〉, . . . 〈232 − 1, 231 − 1〉
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In the final update, σC is updated with the states where lines is 232 − 1
and ch is not equal to 10, thereby reaching a fixpoint to the equation system.
The fact that the equalities with a star indeed define a solution for the initial
equation system can be seen by observing that calculating σD from σC results
in the same state space σD that is marked with a star above. Hence, all
dependent equations starting with σD will retain the same solution set, and
a fixpoint is reached.

Note that 〈Σ,⊆〉 forms a complete partial order (cpo) since Σ is finite.
Augmenting the sets σB, . . . σI by evaluating the equalities always converges
onto the minimal fixpoint of the equation system, as shown by Kleene; see [59].

The above procedure for calculating the collecting semantics is in fact
a decision procedure for the task of determining whether an out-of-bounds
buffer access may happen at run-time. Undecidability is not an issue since the
domain Σ is finite, albeit very large. Thus, due to the size of the sets, the
amount of time that it would take to calculate the collecting semantics makes
this procedure impractical. The following chapters introduce an abstract view
of the collecting semantics – that is, a symbolic representation of the states
that can be calculated more readily.

2.6 Related Work

Designing a program analysis on any real-world language is a major under-
taking due to the sheer complexity of implementing all syntactic constructs
and examining the usually ill-defined semantics of each language construct.
One approach to circumvent this burden is to restrict an analysis to a toy lan-
guage in order to show the merit of a new idea. A more compelling technique
is to translate a real-world programming language into a simpler intermedi-
ate language that only exposes the properties of interest. Prime examples of
the latter approach are most works on points-to analysis, where the inter-
mediate language consists of as little as four flow equations [99, 176]. Alas, a
translation into such a small language is usually an approximation in itself and
thus subject to correctness concerns. For instance, the points-to analysis of
Heintze and Tardieu [99] is unsound if the C program contains pointer arith-
metic. Steensgaard showed how to conservatively incorporate pointers with
offsets into a points-to analysis [175]. The analysis is sound if all pointers
have offsets that lie within the bounds of the underlying memory region. This
assumption allows for a simpler intermediate language that distinguishes only
between assignments between two variables and assignments of expressions
that may contain non-zero offsets. Thus, this simplification is based on par-
tial correctness of the C program in that it may not exhibit certain undefined
behaviour such as out-of-bounds accesses. Since the goal of our analysis is to
show the absence of undefined behaviour, no simplification with respect to
values of expressions is possible.
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Since the values of expressions cannot be dismissed in an analysis that
infers maximum bounds on variables, there seems to be little room for simpli-
fying the source language, except for removing syntactic sugar. The advantage
of using an intermediate language with the same expressiveness as C is that
the translation from C to Core C is purely syntactic without any approxima-
tion that requires a correctness argument. In fact, the only concern regarding
the preservation of the source code semantics is the interpretation of the C
source program, a task that is delegated to the GNU C compiler.

The downside of Core C being as expressive as C is that the collecting
semantics is formulated in terms of machine concepts, namely in terms of
bits and bytes in memory. Due to the low-level character of the collecting
semantics, the task of relating it to abstract entities such as polyhedra becomes
a challenge in itself.

Despite the low-level nature of Core C, its collecting semantics only ex-
presses an approximation of the program behaviour [59]. Firstly, the collecting
semantics assumes that the input to the program can be arbitrary. In the con-
text of verifying embedded systems, assuming that input is arbitrary is often
too strong and can lead to imprecise results. A sensor, for instance, might
always return a floating-point number within a given range and, in particular,
it might never return infinity or “not a number” [30]. Secondly, calculating
the union of memory configurations removes any information about causality
between memory states. For example, given an erroneous state, the collect-
ing semantics does not provide enough information to read off a program
input that leads to this state since the actual execution trace that led to the
erroneous state is part of a set of all possible execution traces. Another conse-
quence is that the collecting semantics cannot be used to prove termination.
Even in the light of these approximations, calculating the collecting semantics
is infeasible except for very small systems [155]. The next chapter introduces
abstract domains that can summarise states in the collecting semantics suc-
cinctly.



Part I

Abstracting Soundly



3

Abstract State Space

A typical C program, like the one presented in the introduction, can be run
on arbitrary inputs. Thus, the collecting semantics cannot be calculated since
the input of the program may fill up all of the 4-GB state space. Even in cases
in which the program only operates on a fixed amount of memory, the number
of memory configurations is usually too large to be enumerated exhaustively.
Hence, an automatic prover for a certain property needs to summarise the
possible memory configurations into a symbolic state. However, a summary
that finitely describes the exact concrete states of a program solves the Halting
Problem, which itself is undecidable [181]. Thus, we circumvent this problem
by mapping a concrete state (that is, the collecting semantics at a particular
program point) to an abstract state, which in turn maps back to a set of
concrete states that includes the original set but may include other, spurious
concrete states. Hence, an abstract state over-approximates the set of possi-
ble concrete states, a concession that makes a proof of undecidable program
properties possible in many cases. The challenge in devising a static analysis
is therefore to find an abstract representation of program states that is pre-
cise in order to verify as many programs as possible. In other words, a precise
analysis requires an abstract representation that includes as few spurious con-
crete states as possible to ensure that questions like “Does the pointer access
*p lie within the bounds of the pointed-to buffer?” can be answered by the
abstract domain with “yes” whenever this is true in the actual C program.

This section presents two abstract domains that summarise the concrete
state into a finite and tractable representation while being precise enough to
verify non-trivial programs. The two abstract domains are the following:

points-to domain Pts: The points-to domain tracks which memory regions a
given pointer possibly points to. For the question above, this domain may
state that the pointer p may point to the memory regions v or w.

numeric domain Num: The numeric domain expresses bounds on variables
and relations between variables using linear inequalities. For the question
above, this domain can show that the offset (that might have been added
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1 ����* strings [] = {"Three", "string", "constants." };

2 ����* s = NULL;

3 ��� i;

4 �	� (i=0; i<
���	�(strings )/
���	�(strings [0]); i++) {

5 s = strings[i];

6 printf("%s\n", s);

7 };

Fig. 3.1. A loop that requires arguing about numeric properties and l-value flow.

to the pointer p) is greater than or equal to zero and less than the size of v
and less than the size of w, thereby providing the required “yes” answer.

Neither of these domains is new as such. The information regarding
whether two pointers may reference the same program location is a prereq-
uisite for many compiler optimisations [1]. This so-called alias analysis was
later generalised to points-to analysis [74]. The second domain deployed in our
analysis is the numeric domain of convex polyhedra [62]. While this domain
is well known, too, it is not widely used due to its scalability problems. While
scalability is addressed in Part II of this book, the focus of this part lies in
how the domains interface with the value-range analysis. In particular, this
chapter presents the operations on the points-to and the numeric domains.

Before presenting the points-to domain of the analysis in Sect. 3.2 and
the numeric domain in Sect. 3.3, we give an introductory example in order to
illustrate how an abstract domain is put to use in a value-range analysis.

3.1 An Introductory Example

The collecting semantics presented in the last chapter demonstrated how the
set of all possible states of a given program can be defined. This section
applies the same techniques to abstract states in order to demonstrate how
an over-approximation of the collecting semantics can be inferred. To this
end, consider the C fragment in Fig. 3.1. The strings array contains three
pointers to three different strings that are to be printed in line 6. The loop
initialises the index i to zero such that the first element of strings is accessed
in the first loop iteration. The variable is advanced until the last entry of the
array is reached, at which point the loop terminates.

In order to show how an abstract state is calculated for this program,
consider its simplified flow graph in Fig. 3.2. The aim of our analysis is to
characterise the values that can arise along the edges of the control-flow
graph. To this end, each edge is decorated with an abstract state P,Q,R, S,
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i<3i=0, s=NULL
s=strings[i]

i++

+

yes

no

P

Q

S

T

R

Fig. 3.2. Flow graph of the program in Fig. 3.1.

and T . For the sake of analysing the program, let P i, Qi, Ri, Si, and T i de-
note the values of i and let P s, Qs, Rs, Ss, and T s represent the memory
regions that the pointer s may point to. We shall merely describe the value
of i as an interval and the value of s as a set of abstract addresses A. In
particular, we omit how to represent the array but assume that the state-
ment strings[i] returns the address of the ith string, which shall be stored
at the abstract addresses si ∈ A for i ∈ {0, 1, 2}. The possible values are
characterised by the following equations. Here, the operator � is defined as
[l1, u1]� [l2, u2] = [min(l1, l2), max(u1, u2)], that is, it calculates the smallest
interval that includes the two given intervals. Furthermore, the special tag
null ∈ A denotes that a pointer contains NULL.

P i = [0, 0]
Qi = P i � T i

Ri = Qi ∩ [3, 231 − 1]
Si = Qi ∩ [−231, 2]
T i = {v + 1 | v ∈ Si}

P s = {null}
Qs = P s ∪ T s

Rs = Qs

Ss = Qs

T s = {s1 | 0 ∈ Si}∪
{s2 | 1 ∈ Si}∪
{s3 | 2 ∈ Si}

A solution for these equations can be calculated by an upward fix-
point calculation using Jacobi iteration [58]. In the example, this itera-
tion strategy is applied by defining an initial iterate 〈P0, Q0, R0, S0, T0〉
and calculating 〈Pj+1, Qj+1, Rj+1, Sj+1, Tj+1〉 from the equations above with
Pj , Qj , Rj , Sj , Tj substituting the corresponding variables on the right side.
Here, each tuple element Xj is itself composed of the corresponding interval
Xi

j and the points-to set Xs
j . Figure 3.3 shows the actual calculation of the

fixpoint. The initial state is P i
0 = Qi

0 = Ri
0 = Si

0 = T i
0 = ⊥, where ⊥ denotes

the empty interval and P s
0 = Qs

0 = Rs
0 = Ss

0 = T s
0 = ∅. Stability of the loop

is attained in iteration 13 since Si
13 ⊆ Si

12 and Ss
13 ⊆ Ss

12. Given this simple
example, we can infer the domain operations that are required for a static
analysis. The control flow of the program is reflected in the semantic equa-
tions, in particular, a join of two control-flow paths is represented by a join
operation in the equation. These join operations depend on the underlying
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domain: While it is simple set union for the l-values of xs, it is the more
complex operation � for the interval domain. Similarly, a split in the con-
trol flow by a conditional is reflected with an intersection operation in the
semantic equations. This operation is commonly called a meet operation. In
the example, the conditional expresses a property from which only an inter-
section of the numeric domain can be deduced. A third operation, which tests
for inclusion, is required in order to detect stability. In general, the domains
and their operations form a lattice. In the context of our analysis, these are
〈Num,�N ,�N ,�N 〉 and 〈Pts ,�A,�A,�A〉, where inclusion � tests for sta-
bility, � is the join, and � is the meet operation. In addition, the symbol ⊥
(bottom) is used to denote the empty set of states, which implies that the cor-
responding program point is unreachable. Using two domains simultaneously
gives rise to domain interaction; that is, the ability to propagate information
from one domain to the other. For instance, the points-to sets Rs

3 up to Rs
11

are meaningless since the code is unreachable as the numeric states Ri
3 up

to Ri
11 are ⊥. Thus, the values of Rs

3 up to Rs
11 can be refined to ∅. A more

subtle interaction between domains is presented in Sect. 3.3.4 in the context
of the numeric domain Num. Before we embark on the latter, we explore the
design space of the points-to domain Pts and formally define its operations.

3.2 Points-to Analysis

A points-to analysis infers a set of l-values that a given pointer may contain
at run-time. In the context of our analysis, the term l-value is used to indicate
an abstract (i.e. symbolic) address of a variable or memory region rather than
merely an expression that can be used on the left-hand side of an assignment.
A points-to analysis has traditionally been used in optimising compilers to
infer that a pointer cannot point to a certain variable. This information makes
it possible to store the variable in a CPU register while the pointer is accessed.
In the context of our analysis, it simply serves to infer which memory regions
are accessed when reading or writing through a pointer. An idiosyncrasy of
the C programming language is that pointers might have an offset added to
them, which is a common way to access arrays. Even without considering
pointer offsets, a points-to analysis is necessarily approximate [39]. In order
to illustrate the difficulties of determining an exact points-to relation, consider
the code fragment in the left column of Fig. 3.4.

In this example, the pointer variable p contains the value zero after line 2 is
executed, as the constant NULL in C is defined as (����*) 0. The ��-statement
in the third line will always replace the content of p with the address of either
a or b, depending on the return value of the random number function rand().
A standard points-to analysis, which ignores the numeric values of program
variables, can analyse the above program only approximately; that is, it has
to assume that *p writes to either a or b. In order to express approximate
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1 ��� a, b, *p;

2 p=NULL;

3 �� (rand ()) p=&a;

4 ���� p=&b;

5 *p=42;

1 ��� a, b, *p;

2 p=NULL;

3 �� (rand ()) p=&a;

4 �� (p) {

5 *p=42;

6 }

Fig. 3.4. Tracking NULL values in pointers.

points-to relationships, a points-to domain must be able to infer a set of
possibly pointed-to memory regions. These points-to relationships are also
called may-aliases, as an element a in the points-to set of p indicates that p
may point to a but does not necessarily do so. Worse, may points-to analyses
implicitly assume that a variable can be NULL, and hence a singleton points-to
set also merely implies a may-alias relation. This is a severe limitation in the
context of verification, as illustrated by a variation of the example shown on
the right of Fig. 3.4. In this case, the points-to set of p after the execution
of line 3 contains merely a, indicating that p may or may not point to a.
In particular, if NULL is not explicitly represented in the points-to set of p,
then it cannot be shown that *p=42 is legal; i.e., that the statement does not
dereference NULL. The reason why a possible NULL value of a pointer is not
tracked by scalable points-to analyses is that they are usually flow-insensitive;
that is, the inferred points-to set is valid at all points in the program. Yet,
when a pointer variable comes into scope, it initially contains no l-values.
This fact must be retained by an analysis that infers points-to sets that are
valid at all program points. An easy solution is to assume that any pointer
can always contain NULL. Note, however, that a NULL pointer may still have
an offset, which is a pure value. Neglecting such an offset renders an analysis
unsound [142].

However, the idiom of testing a pointer for NULL is a common one in
C programs, and proving the absence of NULL-pointer dereferences is a re-
quirement to show correct memory management. Thus, to prove the example
above correct, an analysis is needed in which the points-to set of a variable
can be replaced (by assignment) and restricted (by conditionals), resulting in
an analysis that infers points-to sets on a per-statement granularity rather
than as a global property of a pointer variable. Such an analysis is commonly
referred to as a flow-sensitive points-to analysis [46, 74]. Given that elements
can be removed from a points-to set, we introduce a special address null,
which can be stored in points-to sets to denote that a variable contains NULL
rather than an address. Thus, in the example above, the points-to set of p at
the end of line 3 consists of a and the tag null. The latter is removed by the
��-statement in line 4. Using this tag, it is possible to infer not only that p
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is not NULL, but also that the access through p definitely writes to a, as it is
now the only possible value of p.

While the precision of flow-sensitive points-to analyses is superior to that
of flow-insensitive analyses, they incur a higher cost, especially in memory
usage, since each program point may feature a different points-to set. However,
a flow-sensitive analysis requires a fixpoint calculation that is similar to that
of the numeric domain presented below, whereas a flow-insensitive analysis
requires a closure or unification [100] to calculate a solution to a set of flow
equations. To illustrate this, Fig. 3.5 shows a sequence of statements and the
inferred points-to sets.

statement flow-sensitive flow-insensitive

x=&u; y 
→ {null}, x 
→ {u} y 
→ ∅, x 
→ {u}
y=x; y 
→ {u}, x 
→ {u} y 
→ {u}, x 
→ {u}
x=&v; y 
→ {u}, x 
→ {v} y 
→ {u, v}, x 
→ {u, v}

Fig. 3.5. Flow-sensitive versus flow-insensitive points-to analysis.

Both flow-sensitive and flow-insensitive algorithms initially create a points-
to set that indicates that y does not point to any variable but may be NULL.
Note that flow-insensitive points-to sets implicitly include null. Due to the
second statement, the flow-sensitive analysis replaces the points-to set of y
with that of x, which contains u due to the first statement. In contrast, the
flow-insensitive analysis creates a flow relation y ← x, implying that all ad-
dresses that are stored in x can also flow to y. A closure algorithm is required
to actually propagate the addresses from x to y. Running such a closure after
the second statement yields y �→ {u}; however, rerunning the closure after
executing the third statement propagates all possible addresses that x may
contain (namely those of u and v) to y, whereas the points-to set of y in
the flow-sensitive analysis remains unchanged. The superior efficiency of a
closure-based points-to analysis lies in the ability to completely collect flows
between variables and to apply the closure on the full set of constraints. This
advantage is lost when flow-insensitive points-to analysis is combined with a
separate numeric analysis to infer offsets of pointers. To illustrate this, recon-
sider the code fragment in Fig. 3.1. Assume again that the three strings are
stored at addresses denoted by the l-values s1, s2, and s3, respectively. A nu-
meric analysis will infer a range of values for i by iteratively analysing the
loop. In particular, during the first iteration, i is zero and a flow s← s1 will be
created; in the second iteration i is in [0, 1] and the flow s ← s2 is added; and
finally s ← s3 is added when i ∈ [0 . . . 2]. In order to infer which strings can
be passed to printf in line 5, the last iteration of the loop must be analysed
with an up-to-date points-to set to ensure that the points-to set of s contains
the l-values of all strings. However, it is difficult to anticipate which iteration
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will lead to a fixpoint, and thus the closure algorithm must be rerun during
each loop iteration to ensure that a correct points-to set is used in the last
loop iteration. Alas, calculating the closure on the whole points-to domain
is expensive to the extent that the cost becomes prohibitive for a practical
analysis. Our analysis therefore features a flow-sensitive points-to analysis,
which turns out to fit much better with a numeric analysis. We now intro-
duce the notation necessary to manipulate points-to sets for a flow-sensitive
analysis.

3.2.1 The Points-to Abstract Domain

In this section, we formally define the points-to domain Pts . To this end,
let X denote the finite set of abstract variables that represent the content
of program variables and let A denote the finite set of abstract addresses,
also called l-values. Let Pts = X → P(A) denote the set of points-to maps,
where each A ∈ Pts maps an abstract variable x ∈ X to a set of symbolic
addresses A(x) ⊆ A. Updating A ∈ Pts to A′ = A[x �→ a], where a ⊆ A,
results in A′(x) = a and A′(y) = A(y) for all y �= x. The following operations
on Pts are defined: For any A1, A2 ∈ Pts , define A′ = A1 �A A2 such that
A′(x) = A1(x) ∪ A2(x) for all x ∈ X . Let A1 �A A2 iff A1(x) ⊆ A2(x) for
all x ∈ X . Note that no meet operator is defined on Pts, as a refinement of
a given domain A ∈ Pts can be done by using the update notation. Since
Pts is finite, the structure 〈Pts ,�A〉 is a complete partial order; that is, for
any family of sets A ⊆ Pts, there exists A ∈ Pts such that A =

⊔
A A. Thus,

the solution of a set of semantic equations exists and can be calculated in a
finite number of steps using a standard upward fixpoint calculation (Kleene
iteration).

Let null ∈ A be a tag that is distinct from all other abstract addresses.
If a variable x ∈ X can contain a value (in contrast to an address), then
null ∈ A(x). Define the projection operator ∃X : Pts → Pts, which resets
the points-to set of each variable x ∈ X; specifically, if A′ = ∃X(A), then
A′(x) = {null} and A′(y) = A(y) for all y /∈ X. Furthermore, let AF ⊆ A
denote a set of function addresses such that, for all functions f in the Core
C program, there exists exactly one af ∈ AF . A points-to domain A ∈ Pts is
called unsatisfiable if A(x) = ∅ for some x ∈ X . An unsatisfiable domain A at
a certain location in the program implies that this location is unreachable.

Implementation of the Points-to Domain

The points-to map A ∈ Pts described is readily implementable as a tree
or hash table. An implementation using balanced binary trees, for example,
has the advantage that the join �A and entailment �A operations can be
implemented efficiently in the average case: Rather than recursively joining
or comparing two trees, both operations can stop short whenever two nodes
reside at the same physical address since their content is then necessarily
identical [30, Sect. 6.2]. Our implementation follows a different route, in which
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the join and inclusion operations of the points-to domain are incorporated
into the numeric domain. This approach is described in detail in Chap. 13.
For simplicity of presentation, the following chapters are cast in terms of the
points-to domain above.

3.2.2 Related Work

Points-to analysis has received a vast amount of attention in the last two
decades. Analyses can be classified by three criteria that describe the sen-
sitivity towards certain flows of l-values. These criteria are flow sensitivity
(the ability to differentiate between different branches in a program), context
sensitivity (the ability to differentiate between different call sites of a func-
tion), and field sensitivity (the ability to differentiate between different fields
in a structure). One strand in the literature focuses on improving precision
by applying flow-sensitive analysis [46,74] and improved analysis of recursive
data structures [42, 43, 70] up to the combination with numeric analysis for
improved shape analysis [80], an approach also taken in Chap. 13. Another
direction for improving precision is represented by flow- and context-sensitive
analyses [43, 118]. A rather different approach is represented by the aim of
scaling up points-to analysis to very large programs using flow-insensitive
analyses based on fast union-find algorithms [176]. These unification-based
analyses cannot distinguish between the two assignments x=y and y=x, which
leads to a loss of precision [100] that can partly be recovered by adding some
directionality at an additional cost [65]. Flow-insensitive analyses that fully
obey the directionality of assignments were pioneered by Andersen [3]. This
approach formulates the l-value flow between variables as subset relation-
ships. Algorithms that solve these constraint systems run in O(n3), which is
unacceptable for large programs. However, intelligent removal of chains and
cycles can put subset-based approaches on a par with unification-based al-
gorithms [99]. A major challenge in analysing C is the presence of pointer
arithmetic and structures. While some initial analyses were unsound with re-
spect to pointer arithmetic [99,176], correctness can be achieved by combining
a standard points-to analysis with a simple value-range analysis [144,175]. The
value-range analysis infers that a pointer variable has either a constant off-
set or any offset. In the first case a flow of l-values is only generated from
or to the field at the inferred offset. If the offset is not constant, an l-value
flow from or to all fields in the structure or array is created. This approach
assumes that the underlying C program never accesses a memory region out-
of-bounds. As such, an unknown pointer offset can only access fields within
the same structure.

Furthermore, efficient context-sensitive points-to analysis of C is often
jeopardised by the effect of disparate aliasing at call sites, which requires
the partial inlining of functions [139]. Interestingly, context-sensitive analysis
in some circumstances only marginally improves precision [66], whereas treat-
ing calls to memory allocation functions such as malloc in a context-sensitive
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way can considerably improve precision [140]. Furthermore, while context-
sensitive analysis is considered to be expensive, BDD-based implementa-
tions exist that perform fully context-sensitive analyses remarkably efficiently
[188], even though BDD-based approaches are very sensitive to variable
ordering [26].

3.3 Numeric Domains

Besides inferring possible l-values for each pointer variable, it is important
to know what offset a given pointer has whenever it is dereferenced in order
to ensure that the access is within bounds of the underlying memory region.
Since any computation in a program can feed into the calculation of a pointer
offset, it is necessary to infer values for all variables in the program. To this
end, this section presents the numeric domain Num of our analysis, which is, in
fact, the combination of two domains, namely a polyhedral domain, Poly , as
proposed by Cousot and Halbwachs [62], and a congruence domain, Mult ,
proposed by Granger [85]. While Poly allows the analysis to infer that an
access to a memory region is within bounds, the Mult domain can guarantee
that an access to an array is aligned to element boundaries. We introduce
each domain in turn and discuss their combination afterwards.

3.3.1 The Domain of Convex Polyhedra

Our analysis expresses numeric constraints over the set of abstract variables
X , the same set over which the points-to domain in the last section was
defined. For the sake of this section, let x denote the vector of all variables
in X , thereby imposing an order on X . Let LinR denote the set of linear
expressions of the form a · x, where a ∈ Rn, and let IneqR denote the set of
linear inequalities a · x ≤ c, where c ∈ R. For simplicity, let, for example,
6x3 ≤ x1 + 5 abbreviate 〈−1, 0, 6, 0, . . . 0〉 · x ≤ 5 and x2 = 7 abbreviate the
two opposing inequalities x2 ≤ 7 and x2 ≥ 7, the latter being an abbreviation
of −x2 ≤ −7. As the analysis only infers integral properties, the notation
e1 < e2 is used to abbreviate e1 ≤ e2 − 1. Each inequality a · x ≤ c ∈ IneqR

induces a half-space [[a · x ≤ c]] = {x ∈ R|X | | a · x ≤ c}. A set of inequalities
I ⊆ IneqR induces a closed, convex space [[I]] =

⋂
ι∈I [[ι]]. Let S = {[[I]] |

I ⊆ IneqR} denote the set of all convex spaces and S = S1 � S2 denote the
topological closure of the convex hull of S1, S2 ∈ S; that is, the smallest closed,
convex space S such that S1 ⊆ S and S2 ⊆ S. Together with inclusion ⊆ and
intersection ∩, S forms a complete lattice 〈S,⊆, � ,∩〉. Thus, the solution of
a set of semantic equations such as those presented in Sect. 3.1 exists and
can be formulated as a fixpoint. However, such a fixpoint cannot always be
calculated in finite time for reasons given in the following two paragraphs.
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Unlimited Number of Inequalities

There exist convex sets S ∈ S such that |I| /∈ N for all I ⊆ Ineq with
[[I]] = S. However, any computer implementation that stores inequality sets
can only represent convex spaces that are generated by the intersection of a
finite number of inequalities, known as polyhedra. However, if S1 is a triangle,
S2 a hexagon, S3 a dodecagon, and so forth such that the vertices of Si are
contained within those of Si+1, then S1 ⊆ S2 ⊆ S3 . . . is an ascending chain
that converges onto a disc. While every Si is a polyhedron,

⋃
i Si is not since

a disc cannot be represented by a finite set of inequalities. Hence, the lattice
of polyhedra is incomplete; that is, a fixpoint calculation can converge onto a
convex space that is not a polyhedron.

Unlimited Growth of Coefficients

While LinR and IneqR are defined over R, computer-representable elements
of these sets must be confined to finite elements of R. Consider the sequence
xi ∈ Q, which is defined such that x0 = 1, xn+1 = (xn + 2/xn)/2. The values
x0, . . . xj are included in the convex spaces Sj = [[{1 ≤ x ≤ xj}]]. The sequence
S0 ⊆ S1 ⊆ . . . is an ascending chain that converges onto [[{1 ≤ x ≤

√
2}]].

Thus, a fixpoint computation may create inequalities that can, in general,
contain coefficients and constants of infinite size. Restricting coefficients and
constants to rational numbers again leads to an incomplete domain.

Curtailing Infinite Growth

The above-mentioned sources of infinite ascending chains can be overcome by
using an acceleration technique called widening [56]. This technique ensures
that an infinite sequence of convex state spaces S0 ⊆ S1 ⊆ . . . is eventually sta-
ble by removing inequalities that are new or whose coefficients have changed
with respect to the previous state. Removing new inequalities limits the total
number of inequalities, while removing inequalities whose coefficients change
prevents unlimited growth of coefficients. When widening is applied to increas-
ing chains of convex states, the resulting state is in the set of convex states
that can be finitely described. This refined subset of S can be characterised
as follows: Let Lin denote the set of linear expressions whose coefficients are
drawn from Z, and let Ineq denote the inequalities constructed from Lin and
constants drawn from Z. Allowing only a finite number of inequalities only
admits convex spaces that range over Q such that each a·x ≤ c ∈ Ineq induces
a half-space [[a · x ≤ c]] = {x ∈ Q|X | | a · x ≤ c}. By applying widening, the
attainable convex spaces are defined by Poly = {[[I]] | I ∈ Ineq ∧ |I| ∈ N},
namely the set of (finitely generated) convex polyhedra. In order to guarantee
that a fixpoint calculation only converges onto elements in Poly rather than
S ⊃ Poly , a widening operator ∇ : Poly × Poly → Poly with the following
properties is required [59,62]:
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1. ∀P,Q ∈ Poly . P ⊆ P∇Q
2. ∀P,Q ∈ Poly . Q ⊆ P∇Q
3. For all increasing chains P0 ⊆ P1 ⊆ . . . , the increasing chain defined by

R0 = P0 and Ri+1 = Ri∇Pi+1 is ultimately stable.1

In order to reflect the restriction of Poly to finitely representable state
spaces in the operations on Poly , we use �P for � , and furthermore �P for
∩ and �P for ⊆, which make up the lattice of convex polyhedra 〈Poly ,�P ,
�P ,�P 〉. This lattice is incomplete, as neither the join nor meet of an arbitrary
number of polyhedra is necessarily a polyhedron.

The use of an incomplete lattice together with a widening operator has an
effect on the quality of the attainable fixpoints. A stable polyhedron obtained
in an upward iteration with widening is in general a post-fixpoint – that is,
a polyhedron that is larger than the actual fixpoint. This is obvious from
the example above, where [[{1 ≤ x ≤

√
2}]] is the actual fixpoint; however

[[{1 ≤ x ≤
√

2}]] /∈ Poly . Post-fixpoints for this example are [[{1 ≤ x ≤ 2}]] or
even [[{1 ≤ x}]], or any other polyhedron that entails the actual fixpoint.

Widening ensures that infinitely ascending chains in the domain cannot
impede an analysis from reaching a fixpoint. In particular, it guarantees that
the unlimited growth that may occur when analysing loops is curtailed. Sup-
pose the induction variable x is initialised to zero and incremented thereafter
for each loop iteration. The corresponding sequence of states S0 = [[{x = 0}]],
S1 = [[{0 ≤ x ≤ 1}]], S2 = [[{0 ≤ x ≤ 2}]], etc., exhibits an unlimited growth
of the constant that bounds x from above. Widening will remove the chang-
ing bound on x, yielding S∞ = [[{0 ≤ x}]] as a post-fixpoint. However, even
when infinite ascending chains are over-approximated by widening, the co-
efficients may still grow beyond a manageable size as a result of applying
the �P operation. One possible approach for dealing with inequalities with
very large coefficients and constants is to merely discard them during the
analysis [169], thereby incurring a precision loss that is difficult to under-
stand and anticipate when interpreting the results of an analysis. A more
semantic approach is to observe that all variables of interest are in fact in-
tegral, which makes it possible to restrict the domain of Poly further to the
set of convex spaces over Z. These so-called Z-polyhedra can be characterised
by the fact that all their vertices (that is, all extreme points of the convex
space) have integral coordinates. As a consequence, the inequalities that de-
fine Z-polyhedra have coefficients whose size is bounded by the coordinates of
the vertices they connect. In particular, by equating polyhedra that contain
the same set of integral points, it is possible to define a lattice of Z-polyhedra
〈Poly≡Z

,�Z

P ,�Z

P ,�Z

P 〉. If each equivalence class is represented by its smallest
polyhedron, it is possible to set �Z

P = �P and �Z

P = �P . However, the meet

1 This definition deviates from the original definition by stating that the chain
should be “ultimately stable” rather than “not strictly increasing”. We felt that
the latter could be misread: Rather than ∃i .

⊔
j∈N

Rj ⊆ Ri, it could be inter-
preted as ∃i . Ri+1 ⊆ Ri, which would not guarantee convergence.
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operation �P is not closed for Z-polyhedra. In order to illustrate this, con-
sider Fig. 3.6. The state space P ∈ Poly≡Z

over x1, x2 in the first graph is
transformed by evaluating the conditional x2 �= 5, which is implemented by
calculating P ′ = (P �P [[x ≤ 4]]) �P (P �P [[x ≥ 6]]). Observe that the input
P as well as the two half-spaces [[x ≤ 4]] and [[x ≥ 6]] are Z-polyhedra. The
second graph shows the two intermediate results P1 = P �P [[x ≤ 4]] and
P2 = P �P [[x ≥ 6]], both of which have two non-integral vertices. As a con-
sequence, the join of P1 and P2, shown as the third graph, has non-integral
vertices as well and is therefore not a Z-polyhedron. However, if the interme-
diate results were shrunk around the contained integral point sets (e.g., by
applying the techniques presented in Chap. 9) as done in the fourth graph,
all vertices of the intermediate results would be integral and the join would
be a Z-polyhedron, too. However, for general, n-dimensional polyhedra, the
number of inequalities necessary to represent a Z-polyhedron can grow expo-
nentially with respect to a polyhedron over Q that contains the same integral
points [157, Chap. 23]. Thus, no efficient algorithm exists to implement the
�P -operation on Z-polyhedra, and hence, for the remainder of this book, the
Poly domain over Q will be used to approximate Z-polyhedra. However, in
order to limit the growth of coefficients, Chap. 9 will present efficient tech-
niques to approximate the �Z

P -operation. In anticipation of this chapter, we
define all operations that query the value of a polyhedron to return integral
bounds.

Given the basic lattice operations on polyhedra, the next section introduces
useful operations that allow for a more concise manipulation of polyhedra,
thereby providing the foundations for the abstract semantics presented later.

3.3.2 Operations on Polyhedra

In contrast to the points-to domain, the manipulation of polyhedra can be
more intricate. Assigning a value to a variable x is easily accomplished when-
ever the variable does not occur in the inequality set describing a polyhedron
P ∈ Poly . In this case, the polyhedron P �P [[{x = 42}]] corresponds to
P except that the value of x is 42. If x is already constrained within the
polyhedron, P �P [[{x = 42}]] implements the semantics of an ��-statement
that tests if x is 42. In order to update x to a new value, the old value of
x has to be discarded first. To this end, define the family of projection op-
erators ∃x : Poly → Poly such that ∃xi

(P ) = {〈x1, . . . , xi−1, x, xi+1, . . . xn〉 |
〈x1, . . . xn〉 ∈ P, x ∈ R}. Intuitively, ∃x(P ) removes any information pertain-
ing to x from the polyhedron P ∈ Poly . Thus, an assignment x=42 can be
implemented as ∃x(P ) �P [[{x = 42}]]. Observe that an update of the form
x=x+1 needs special treatment since P �P [[{x = x+1}]] represents the unsat-
isfiable (that is, empty) polyhedron. Thus, in cases where the variable that
has to be updated appears in the right-hand side expression, we assign the
value to an intermediate variable t ∈ X T and afterwards assign t to x. Here,
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Fig. 3.6. Example to show that Z-polyhedra are not closed under intersection.
Integral points are shown as crosses and the half-spaces [[x ≤ 4]] and [[x ≥ 6]] are
indicated by vertical lines with arrows pointing towards the feasible space.

X T ⊆ X is a dedicated set of temporary abstract domain variables that do
not correspond to any program variable. Thus, any assignment x=e, where e
is a linear expression, can be modelled as ∃t([[{x = t}]]�P ∃x(P �P [[{t = e}]]))
whenever t is unrestricted in P . Note that an assignment x=e where x occurs
in e is invertible [62] and can be implemented by an affine transformation of
the polyhedron [14]. In practice, however, a uniform implementation of assign-
ment as shown above can be implemented as efficiently; see Chap. 8 and [169].
Since assignment is a reoccurring concept, we write P �x := e as a convenient
abbreviation of the update described above.

While the notation P �x := e is a concise way to specify most assignment
operations, it is not sufficient to express division and right shifts. To remedy
this, let P �x := y >> n, n ∈ N denote a right shift of n bits; that is, it updates
x such that P contains integral solutions of x = �y/2n�. Linear relations that
satisfy this equation are 2nx = y − d where d ∈ {0, . . . 2n − 1}. Hence define
P � x := y >> n as ∃t([[{x = t}]] �P ∃x(P �P [[{y − (2n − 1) ≤ 2nt ≤ y}]])).
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1
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1 2 5

y

x10

4

x=8

Fig. 3.7. State space for shifting y two bits right.

In order to illustrate this operation, let P ′ = P �y := x >> 2. The resulting
state space satisfies P ′ �P [[{x− 3 ≤ 4y ≤ x}]]. Figure 3.7 depicts P ′ for the
case where x was unrestricted in P . Crosses in the diagram denote integral
points in P ′. The vertical line depicts the feasible space for P ′ �N [[{x =
8}]], which implies 1.25 ≤ y ≤ 2, and hence, because x approximates an
integral variable, y = 2 = 8 >> 2 follows. Observe that x >> n does not
correspond to x/2n in C since the latter truncates digits of the absolute
value, which corresponds to rounding to zero, whereas the former truncates
bits in the two’s-complement representation, which corresponds to rounding
towards −∞. Note though that integer division by a constant can be defined
analogously to the right-shift operator for positive divisors and by relaxing
the upper bound to model rounding upwards for negative divisors [165].

In order to find the minimum value of an expression a · x ∈ Lin such that
x ∈ P , we introduce the operation minExp : Lin × Poly → (Z ∪ {−∞}). To
this end, let C = {c ∈ Z | P �P [[{a · x ≤ c}]] �= ∅} (that is, C contains all
constants c such that the half-space defined by a · x ≤ c has a non-empty
intersection with P ) and let

minExp(a · x, P ) =
{

min(C) if min(C) exists
−∞ otherwise

Observe that minExp(a·x, P ) can be realised with the simplex algorithm [157]:
If there exists y ∈ Qn, n = |X |, that minimises the expression a · y over P ,
then put minExp(a · x, P ) = �a · y�; otherwise put minExp(a · x, P ) = −∞.

Let P (a ·x) denote the set of values that an expression a ·x ∈ Lin can take
on in a given polyhedron P ∈ Poly . Specifically, define P (a · x) = ∅ if P = ∅.
Otherwise, let P (a·x) = [l, u], where l ∈ Z∪{−∞} and u ∈ Z∪{∞} denote the
minimum and maximum values that the linear expression can take on in P .
The value of u is given by u = −minExp(−a · x, P ), where −(−∞) =∞.

This concludes the section on commonly used operations on polyhedra.
We now embark on defining a domain that expresses congruence information.
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1 (uint32) s = 0;

2 (int32) i = 0;

3 jump b207

4 b130

5 (int32) i.0 = i;

6 t9 = &strings;

7 (int32) t9 = 4*i.0+t9;

8 (uint32) s = *t9;

9 t11 = &t10;

10 printf (( uint32) t11 , (uint32) s)

11 (int32) i = i+1;

12 jump b207

13 b207

14 (uint32) i.1 = i;

15 �� (uint32) i.1<=2 then jump b130

16 jump b235

Fig. 3.8. The loop of the string printing program translated to Core C. Note that
the temporary variables i.0 and i.1 are introduced by the GNU C compiler.

3.3.3 Multiplicity Domain

Inferring bounds on the values of variables and pointers is often not enough to
prove correct memory management. Consider again the example in Fig. 3.1 in
which the array of strings is accessed by the expression strings[i]. Here, i
ranges over the integer values 0, 1, and 2. The corresponding Core C fragment
in Fig. 3.8 shows the body of the loop and, in particular, how the array access
is translated. Since the array contains pointers that are each four bytes in
size, line 7 multiplies the loop counter i by four and adds this value to the
address of the strings array. The result is dereferenced in line 8. Given a pure
polyhedral analysis and a points-to analysis, we can only infer that *t9 will
access the array strings at the offsets 0, 1, . . . 8. This information, however,
is not enough to infer that the string pointers in the array are written into s
since an access to, say, the bytes 3 . . . 6 is possible, which would indicate that
some bytes of the first and the second pointers can be written to s. While this
is not the case in the actual program, the analysis does not provide enough
information to deduce this. In order to infer that the access always reads whole
pointers, it is necessary to infer that *t9 has an offset that is a multiple of
the pointer size.

An analysis that deduces that program variables can only take on the
values of the form c+mZ (that is, values in {. . .−2m+c,−m+c, c, c+m, c+
2m, . . .}) was introduced by Granger [85] in the form of a congruence domain.
This information is sufficient to infer that an access such as a[i].f=0 only
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writes the f field of the structures that make up the array a. However, in the
context of string buffer analysis, it is sufficient to know that a variable is a
multiple of 2n in order to show that accesses to arrays of pointers are aligned.
Hence, we propose a simpler domain than that of Granger, which we call
the multiplicity domain. In particular, let Mult = X → {0, . . . 64} denote the
function space that tracks the number of least-significant bits (LSBs for short)
that are zero. A map M ∈ Mult assigns a value n = M(x) to each variable
x ∈ X whenever x takes on values that are a multiple of 2n. We assume that
no variable is larger than 64 bits, such that a zero value of a variable x can
always be expressed as M(x) = 64. Updating M to M ′ = M [x �→ n′] results
in M ′(x) = n and M ′(y) = M(y) for all y �= x. The lattice operations on Mult
are defined as follows. For any M1,M2 ∈ Mult , define M ′ = M1 �M M2 such
that M ′(x) = min(M1(x),M2(x)) for all x ∈ X . Let M1 �M M2 iff M1(x) ≥
M2(x) for all x ∈ X . Note that in this context the mapping M
 ∈ Mult with
M
(x) = 0 for all x ∈ X is the largest lattice element; that is, it is the least
precise in that it states that all variables are divisible by one.

In order to refine a given domain, let Equ = Lin×Z denote the set of linear
equalities written e = c, where e ∈ Lin, c ∈ Z, and define δ : Z → {0, . . . 64}
so that δ(x) is the number of LSBs that are zero in x or 64, whichever is
smaller. We define the meet operator �M : Mult × Equ → (Mult ∪ {⊥M}),
where ⊥M is a symbolic tag denoting an unsatisfiable domain. The idea is
to refine a given domain element M ∈ Mult to M ′ = M �M (e = c) by
adding information expressed by e = c. To illustrate how �M can be realised,
let e ≡ a1x1 + . . . + anxn such that ai �= 0 for i = 1, . . . n. We refine the
multiplicity of a single variable xj by rewriting e = c to

−ajxj = a1x1 + . . . aj−1xj−1 + aj+1xj+1 + . . . anxn − c

Refining the domain using �M adds additional information and, hence, the
number of least-significant bits that are zero for xj cannot decrease. On the
contrary, the right-hand side of the equation above may imply a larger number
of least-significant bits that are zero, which can be used to update M(xj).
Note that the multiplicity of each term aixi is δ(ai) + M(xi), whereas the
multiplicity of the constant is simply δ(c). The multiplicity of the right-hand
side must be greater than or equal to that of each individual term; that is, it
must be at least

min
(

δ(c), min
i=1,...j−1,j+1,...n

(δ(ai) + M(xi))
)

In the case where aj > 1 or aj < −1, the number given by the expression
above has to be reduced by δ(aj) in order to infer the number of zero LSBs
of xj . Considering that M(xj) can only increase, the update of xj in M can
thus be defined as follows:

M

[
xj �→ max

(
M(xj), min

(
δ(c), min

i=1,...j−1,j+1,...n
(δ(ai) + M(xi))

)
− δ(aj)

)]
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x + y + 2z = 0
action M(x) M(y) δ(2) + M(z) δ(0)

initial 3 1 1 + 1 64

update x 3 1 1 + 1 64

update y 3 2 1 + 1 64

update z 3 2 1 + 1 64

Fig. 3.9. Updating multiplicity information on adding an equality constraint.

Since this operation updates the multiplicity information of only one variable,
it has to be applied n times to update the multiplicity of all variables in e = c.

In order to illustrate the application of this formula, consider updating the
multiplicity information of M in Fig. 3.9 when the equation x + y + 2z = 0 is
added to the domain. The initial multiplicity values in M are such that x is
a multiple of 8, whereas y and z are merely even. Updating x cannot improve
this information since min(δ(1)+M(y), δ(2)+M(z), δ(0)) = min(1, 2, 64) = 1.
Strengthening the multiplicity information for y is possible, however, since
δ(2) + M(z) = 2 is the smallest term. The final update of z cannot improve
the bound since min(δ(1)+M(x), δ(1)+M(y), δ(c)) = 2 and, after subtracting
δ(2) = 1, is no larger than M(z) = 1.

Consider the same example when the constant is set to 1. In this case, none
of the updates above can improve any of the multiplicity values. Moreover,
the left-hand side of the equation x + y + 2z = 1 is known to be at least a
multiple of four, which implies that no values exist for x, y, z such that the
equality above holds, so calculating M �M (x + y + 2z = 1) must result in
an unsatisfiable domain. Hence, in general, the meet operation returns ⊥M

whenever the following holds:

min
i=1,...n

(δ(ai) + M(xi)) > δ(c)

To summarise, the algorithm for calculating M ′ = M �M (e = c) returns
⊥M whenever the multiplicity of c is smaller than that of the left-hand side.
Otherwise, the multiplicity of each variable is updated in turn. An update
of a single variable needs to consider all n variables, and thus updating all
variables is quadratic. This is not considered to be a problem in practice since
n is never larger than 2 or 3. In fact, usually only a single variable needs
updating, namely when intersecting with an equation that stems from an
assignment operation: Define M ′ = M � x := e analogously to the definition
for the polyhedral domain. In this case, the variable x and the temporary
variable t are projected out before the intersection; hence they have no zero
LSBs and M(x) = M(t) = 0. Therefore, updating the terms in e cannot
lead to any additional information, and only M(x) and M(t) need updating.
Analogously, the assignment M � x := y >> n merely implies that M(x) is at
least (M(y)− n), and no new information can be inferred on M(y).
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In order to test an alignment assumption during verification, it is useful
to restrict M ∈ Mult such that M(x) ≥ n. This fact can be expressed by
calculating M �M (x = 2n). For instance, let x denote the offset of pointer
t#9 in Fig. 3.1. Then M ′ = M �M (x = 4) ensures that M ′(x) ≥ 4 or
M ′ = ⊥M . If M �M M ′, then M did not change and the access is aligned.
A warning must be emitted otherwise.

With respect to the calculation of fixpoints, observe that Mult is finite and
that the lattice 〈Mult ,�M ,�M ,�M 〉 is complete. Standard Kleene iteration
is therefore sufficient to calculate a fixpoint. In accordance with the points-to
domain and the polyhedral domain, we define a family of projection operators
∃x : Mult → Mult such that if M ′ = ∃x(M) then M ′(x) = 0 and M ′(y) =
M(y) for all y �= x.

The next section combines the multiplicity and polyhedral domains into a
single Num domain that expresses all numeric properties in the analysis.

3.3.4 Combining the Polyhedral and Multiplicity Domains

In this section, we combine the polyhedral and multiplicity domains into a
single numeric domain Num. Let Num = (Poly ×Mult) ∪ {⊥N}, where ⊥N

denotes the empty state that corresponds to an unreachable point in the
program. The two domains can be combined by lifting their operations point-
wise. Thus, define:

• 〈P,M〉 �N 〈P ′,M ′〉 iff P �P P ′ and M �M M ′

• 〈P ′,M ′〉 = 〈P1,M1〉 �N 〈P2,M2〉 iff P ′ = P1 �P P2 and M ′ = M1 �M M2

• 〈P ′,M ′〉 = 〈P,M〉� x := e iff P ′ = P � x := e and M ′ = M � x := e
• 〈P ′,M ′〉 = 〈P,M〉� x := e >> n iff P ′ = P � x := e >> n and

M ′ = M � x := e >> n
• 〈P ′,M ′〉 = ∃x(〈P,M〉) iff P ′ = ∃x(P ) and M ′ = ∃x(M)

Defining the meet operator for intersection requires a case distinction depend-
ing on the outcome of the operations on the individual domains. Thus, define

〈P,M〉 �N {e = c} =
{
⊥N if P ′ = ∅ ∨M ′ = ⊥M

〈P ′,M ′〉 otherwise

where P ′ = P �P [[{e = c}]] and M ′ = M �M {e = c}. The meet operation
〈P,M〉 �N {e ≤ c} is defined analogously except that in this case M ′ = M .
Both variants of the meet operator can be lifted to sets of inequalities by
interpreting N�N{e1 ≤ c1, . . . en ≤ cn} as N�N{e1 ≤ c1}�N . . .�N{en ≤ cn},
where N ∈ Num. The meet operator can return the special bottom value
⊥N ∈ Num, which is returned verbatim by all operations above, except for
⊥N �N N = N �N ⊥N = N . Furthermore, ⊥N �N N and N �N ⊥N only
if N = ⊥N . Define ≡ to refine M such that 〈P,M〉 �N {x ≡ s} = ⊥N if
M ′ = M �M {x = s} = ⊥M and 〈P,M ′〉 otherwise. For brevity, let ∃X(N)
abbreviate ∃x1(. . .∃xn(N) . . .), where X = {x1, . . . xn} ⊆ X . The next section
observes how returning ⊥N instead of 〈∅,M〉 is a way to improve precision.
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Fig. 3.10. Propagating information from the Poly to the Mult domain.

The Reduced Product between Poly and Mult

The meet operator �P is interesting because it reduces the two domains Poly
and Mult in the sense that a state of the form 〈∅,M〉 or 〈P,⊥M 〉 is equated
with ⊥N = 〈∅,⊥M 〉, which is a smaller state in the lattice Num. This reduc-
tion avoids the propagation of unsatisfiable domains, as witnessed in Fig. 3.3.
Reducing two domains is usually a trade-off between the computational effort
of propagating information from one domain to the other and the gain in
efficiency and precision of the analysis. In some cases, it is possible to create
a so-called reduced product – that is, a combination of domains that are im-
plemented as one and thereby only provide states where no further reduction
is possible [50]. Such a reduction is possible between the polyhedral domain
Poly and the multiplicity domain Mult .

In order to show how information from one domain can refine the existing
information in another, consider the statements x=4*y; �� (rand()) y--;.
Let N denote the initial state in which x is unbounded. The first statement
defines N1 = N � x := 4y, whereas the statement y--, which is guarded by
the ��-statement, transforms this state to N2 = N1 � y := y − 1. These two
states are shown as black lines in Fig. 3.10, while the grey area depicts the
polyhedron of N12 = N1 �N N2, which corresponds to the state space after
the ��-statement. Note that the join introduced three new integral points
for y = 1 in addition to the points 〈4, 1〉 and 〈8, 1〉 that stem from N1 and
N2, respectively. As a consequence, the intersection with an inequality such
as x ≤ 7 restricts the maximum value x in N12 �N {x ≤ 7} to 7. However,
according to the multiplicity domain M1 in N1, the value of x is a multiple
of 4; i.e., M1(x) = 2. Similarly, a linear translation by 4 implies that x is still
a multiple of 4 in N2 and therefore in the join N12, too. Thus, the maximum
value of x after intersecting with x ≤ 7 is 4. Hence, a straightforward prop-
agation of information from the multiplicity domain to the numeric domain
is to refine inequalities according to the multiplicity of the contained vari-
ables. For instance, the calculation N12 �N {x ≤ 7} above can be refined to
N12�N {x ≤ 4} since x is a multiple of 4. However, suppose the C program ex-
ecutes z=x+1; �� (z<=8) {}, which leads to the state N3 = N12 �z := x+1
and N4 = N3�N {z ≤ 8}. Semantically, this is equivalent to testing for x ≤ 7.
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However, none of the lower bits of z are known to be zero, and the evaluation
of N3 �N {z ≤ 8} cannot be refined without examining all linear relationships
that z has with other variables in N3.

An automatic way to incorporate the information of Mult into the poly-
hedral domain is to scale each variable x in the polyhedron by 1/2M(x).
Thus, an intersection 〈P,M〉 �N {a · x ≤ c} is executed by calculating
P ′ = P �P [[{〈2M(x1)a1, . . . 2M(xn)an〉 · x ≤ c}]], where 〈a1, . . . an〉 = a. The
entailment check �N and the join �N also face the challenge of operating on
polyhedra that correspond to different multiplicity domains M and M ′. In
this case, the axes of the polyhedron that correspond to the variable x with
M(x) > M ′(x) have to be scaled by 2M(x)−M ′(x). The benefit of this represen-
tation shows when a tightening around the Z-grid of the polyhedron is applied.
For the example above, P3 �P [[2M3(z)z = 2M3(x)x+1]] = [[z = 4x+1]], where
N3 = 〈P3,M3〉. Enforcing N3 �P {z ≤ 8} results in P3 �P {z ≤ 8} (since
2M3(z) = 1), which in turn will update the bound of x in P3 to x ≤ 1 3

4
, which

is tightened to x ≤ 1. Not only is the value of x in N3 now x ≤ 1 · 2M(x) = 4,
but through tightening around the Z-grid in Poly , the bound of z in P3 is
automatically refined to z ≤ 5. Note that incorporating the multiplicity infor-
mation into the polyhedron reduces the magnitude of coefficients drastically.
This is interesting, as Fourier-Motzkin variable elimination, which is used to
implement the operator ∃x, is exact on Z-polyhedra if the coefficient a of the
removed variable satisfies |a| ≤ 1 [148]. Hence, while the reduction complicates
the join and entailment check, it can increase the precision of other domain
operations.

A propagation from the polyhedral domain to the multiplicity domain
is also possible. For instance, if P �P [[{x = 0}]], then the corresponding
M ∈ Mult can be updated such that M(x) = 64. In fact, in the context of
the reduced domain that stores 1/2M(x) of x in Poly , this kind of reduction
is the only possible way of propagating information from Mult to Poly .

In order to make the upcoming analysis independent of the implementation
of Num, define N(a · x + c) = [l, u]≡d as the set of values {l, l + d, . . . u} ⊆ Z

that the expression a ·x+c can take on in N . Furthermore, define [[N ]] ⊆ Z|X |

to be the set of all points that are feasible in N ∈ Num.
We omit the definitions of the domain operations of Num that use Poly and

Mult as a reduced product, as their presentation is merely technical. However,
we observe that a reduction between the Poly and the Mult domains is also
necessary when Num is not implemented as a reduced product. To this end,
consider the definition of the two query operations N(a · x + c) and [[N ]], and
let Num = (Poly×Mult)∪{⊥N} be the standard product. In this case, [[N ]] =
{〈v1, . . . vn〉 | 〈v1, . . . vn〉 ∈ (P ∩ Zn) ∧ ∀i ∈ [1, n] . vi mod 2M(xi) = 0}, where
n = |X |. In other words, [[N ]] contains all points v ∈ Zn that are in P and
obey the multiplicity information in M . Furthermore, let N(a·x+c) = [l, u]≡d

iff S = {a · v + c | v ∈ [[N ]]} and l = min(S), u = max(S) (if they exist), and
d = max{d ∈ N \ {0} | ∀v ∈ S . v mod d = 0}. In an actual implementation,
N(a · x + c) = [l, u]≡d would be calculated by evaluating P (a · x) = [l′, u′]≡d
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Fig. 3.11. Topological closure is required when calculating P1 �P P2.

and setting l = d�(l′ − c)/d� + c and u = d�(u′ − c)/d� + c. In contrast, for
a reduced product, [[N ]] = {〈2M(x1)v1, . . . 2M(xn)vn〉 | 〈v1, . . . vn〉 ∈ (P ∩ Zn)}.
In particular, the interval of a linear expression is simply N(a · x + c) =
[2M(x)u′, 2M(x)l′]≡d (if u′ and l′ are finite), where d is defined as above.
We conclude with an overview of work related to the Poly and Mult domains.

3.3.5 Related Work

The abstract domain of convex polyhedra was introduced by Cousot and
Halbwachs [62] shortly after Karr described an analysis that infers affine rela-
tionships between variables [109]. Even though the domain of affine relation-
ships is finite, its implementation is non-trivial, and the best implementation
has operators that are cubic in |X | [133]. However, recent interest in inter-
procedural analysis has revived interest in this domain when used to construct
a power set domain – that is, a set of affine domains [134]. The convex hull
operation on polyhedra is exponential, which led to the investigation into
sub-classes of polyhedra that provide a performance guarantee [47, 128, 172].
However, the main reason for exponential growth is the calculation of the con-
vex hull via an intermediate representation based on vertices, lines, and rays,
which is predominant in most polyhedra libraries [14, 27, 93, 119]. Avoiding
this intermediate representation makes for an efficient alternative [169].

While making polyhedral operations more efficient is a prerequisite for
large-scale program analysis [30, 31], a different strand of research tries to
make polyhedra more expressive. For instance, Bagnara et al. [14] show how
to support strict inequalities such as x < 7, which is relevant when analysing
timed automata that are used to model real-time systems in which clocks can
take on continuous values. In Sect. 3.3.1, the join of two polyhedra was defined
to be the smallest closed convex space of the inputs rather than the smallest
convex space. However, extending polyhedra with strict inequalities in order
to include topologically open half-spaces does not remedy the need for closure.
Consider the join P1 = {〈0, 1〉} and the polyhedron P2 = [[{x = y, x ≥ 0}]],
both depicted on the left of Fig. 3.11. Their convex hull hull(P1, P2) on the
right is shown with a black border for closed sides of the space. In order to
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represent the open upper boundary of the space, an inequality y − x < 1
is necessary. However, P1 �⊆ [[y − x < 1]], and hence y − x < 1 cannot be
part of the convex hull. Thus, a topological closure step is always required to
ensure that the convex hull is representable by a set of inequalities, which are
therefore always non-strict.

By using widening to achieve tractability, polyhedra were successfully ap-
plied in areas such as argument-size analysis of Prolog programs [111,120,125],
value-range analysis of Pascal programs [33], or the analysis of real-time
systems [23, 28, 92]. A way to improve precision is to use sets of polyhe-
dra [11,16,89]. This approach is useful in the context of weaker sub-classes of
polyhedra [128]. In particular, the state space can be divided by the value of
a variable and each polyhedron in the set is associated with one valuation of
that variable [61]. For binary variables and general polyhedra, it is often suf-
ficient and potentially cheaper to use a polyhedral variable as a Boolean flag
that distinguishes between the two states, thereby embedding two polyhedra
in the same polyhedron, an alternative that is sometimes overlooked [89]. Yet,
Chap. 13 shows how joining two polyhedra P1 and P2 using a Boolean flag,
namely by calculating P = (P1 �P [[f = 0]]) �P (P2 �P [[f = 1]]), may cause
a loss of precision unless both P1 and P2 are bounded and integer tightening
methods are in place. Alternatively, an analysis using sets of polyhedra can be
done without distinguishing individual polyhedra. While a widening on gen-
eral sets of polyhedra exists [11], we are unaware of lattice operators that limit
the size of polyhedral sets in a principled way. Such operators would enable
the use of polyhedra in backwards analysis – that is, an analysis where under-
approximated states are propagated against the control flow. Such an analysis
can infer counterexamples, or input data that lead to erroneous behaviour (in
contrast to possible counterexamples [151]). Note that a single polyhedron
does not support backwards analysis: Polyhedra are not meet distributive;
that is, P�P (P1�P P2) �= (P�P P1)�P (P�P P2) due to the fact that the convex
hull operation may introduce points on the left-hand side that are not present
on the right-hand side (see Sect. 4.5.1 for an example). Meet distributivity
is a prerequisite for the domain to be pseudo-complemented [29, Chap. IX,
Theorem 15]. The existence of a pseudo-complement, in turn, is required to
calculate a weakest precondition, which forms the basis of inferring a coun-
terexample [110, Sec. 3.3]. In fact, the weakest preconditions in the context
of linear relations can only be inferred in some very restricted sub-classes of
linear inequality systems [121].

In the context of analysing congruences, most work is due to Granger, who
developed several classes of increasing expressiveness, ranging from simple
arithmetic congruences of the form x ≡ a(mod b), where x ∈ X , a, b ∈ Z

[85], over linear congruence analysis [86] of the form
∑n

i=0 aixi ≡ b(mod c),
where a, b, c ∈ Z, to congruence properties on rationals [87]; that is, ∀x, y, z ∈
Q . x ≡ y(mod z) iff (∃λ ∈ Z . x = y + λz). With respect to efficient
implementations, Miné [129] observed that congruences of the form x − y ≡
a(mod b), where a, b ∈ N, can be analysed similarly to weakly relational
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domains such as Octagon [130]. In a similar vein, Bagnara et al. [8] have
recast the operations on Granger’s congruence domain in terms of operations
on generators of polyhedra, thereby improving efficiency.

We are not aware of any work that combines a congruence domain and
a polyhedral domain into a reduced product. This reduction has some inter-
esting implications: Given that the congruence domain we employ can only
express congruences of the form x ≡ 0(mod 2m), where m ∈ [0, 64], linear rela-
tionships with other variables such as z = x+1 can be inferred that implicitly
express that z ≡ 1(mod 2m). Thus, reduced products between congruence
and polyhedral domains might yield the same congruence information that
the more complex congruence domains [86,87] can express on their own.
The next chapter details how these domains are used to analyse C programs.



4

Taming Casting and Wrapping

In this chapter, we take a first stab at defining a semantics using the ab-
stract states that were presented in the last chapter. These abstract transfer
functions mirror the effect of the concrete semantics except that they modify
points-to sets and polyhedra rather than sets of 4-GB memory configurations.
The abstract semantics therefore completes the triple of the concrete domain
Σ × Θ × Δ, the abstract domain Num × Poly , and the concrete semantics
[[ s ]]�Stmt as shown in the following diagram:

� �

〈N1, A1〉

〈N2, A2〉

[[ s ]]�Stmt

〈σ1, θ1, δ1〉

〈σ2, θ2, δ2〉

[[ s ]]�Stmt

∝

∝

The diagram above introduces a relation ∝ (pronounced “approximates”)
between abstract and concrete states. Using this relation, the analysis of each
statement s in Core C can be proved correct by the following observation. As-
sume that the concrete state 〈σ1, θ1, δ1〉 is included in the collecting semantics
before executing statement s. Suppose that the evaluation of the concrete se-
mantics of s yields a new concrete state 〈σ2, θ2, δ2〉. Let the abstract state
〈N1, A1〉 be in ∝ relation to the initial concrete state 〈σ1, θ1, δ1〉, where ∝
specifies how the contents of the abstract variables X and addresses A in N1

and A1 define the values of the variables that reside in the stack frames θ1

and the dynamic memory regions in δ1. Given the abstract transfer function
[[ s ]]�Stmt that transforms 〈N1, A1〉 into 〈N2, A2〉, correctness of the analysis is
guaranteed if the latter state is in ∝ relation with the corresponding concrete
state 〈σ2, θ2, δ2〉.
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Recall that the concrete semantics is undefined whenever a program error
occurs, in which case no new state 〈σ2, θ2, δ2〉 exists. In this case, the eval-
uation of the abstract semantics [[ s ]]�Stmt〈N1, A1〉 must flag an error. Thus,
even in the presence of a partial concrete semantics, a provably correct analy-
sis ensures that the analysed program cannot enter an erroneous state if the
abstract analysis flags no warnings.

Rather than providing a full correctness proof of all aspects of the analy-
sis, we demonstrate the principle in this chapter on casting and wrapping by
defining Sub C, a strict subset of Core C whose statements only include as-
signments of linear expressions and casts between variables. The absence of
functions, pointers, and structures makes it possible to simplify the diagram
above to include only memory configurations σi and the numeric domain Ni:

� �

�

�

N1

N2

[[ s ]]�Stmt

σ1

σ2

[[ s ]]�Stmt

γ

γ

Due to this simplification, it is also possible to replace the abstraction
relation with a concretisation function γ that maps an abstract state to a set
of concrete states. Before we detail this mapping, we motivate the way casting
and wrapping are dealt with in our analysis.

4.1 Modelling the Wrapping of Integers

In contrast to formal methods that verify properties of a high-level specifica-
tion, a static analysis is complicated by low-level details of source code. For
instance, while a specification expresses properties over arbitrary integers,
variables in a program are usually confined to finite integer types that are
deemed to be large enough to hold all values occurring at run-time. On the
one hand, the use of 32-bit and 64-bit variables makes accidental overflows
rare, and to add checks to each transfer function of the analysis seems exces-
sive considering the infrequency of variable overflows. On the other hand, pro-
grammers often inadvertently introduce wrapping when converting between
signed and unsigned variables and deliberately exploit the wrapping effects of
two’s-complement arithmetic. Thus, wrapping itself should not be considered
harmful, particularly when the objective of an analysis is the verification of a
different property, such as the absence of out-of-bounds memory accesses.
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1 ����� (*str) {

2 dist[*str ]++;

3 str++;

4 };

Fig. 4.1a. The initial code.

1 ����� (*str) {

2 dist[(���) *str ]++;

3 str++;

4 };

Fig. 4.1b. Removing the compiler warning.

1 ����� (*str) {

2 dist[( ��	�
��� ���) *str ]++;

3 str++;

4 };

Fig. 4.1c. Observing that ��
� may be signed.

In fact, there is a danger in an analysis that flags all wrapping as erro-
neous, since any intentional use of wrapping generates a warning message,
which the developer immediately dismisses as a false positive. This problem
is illustrated in the code fragments in Figs. 4.1a to 4.1c that show the loop of
the introductory example on p. 5 at different development stages.

Recall that the purpose of the loop is to count the occurrences of each
character in *str. To this end, the nth element of dist is incremented each
time a character with the value n is encountered in str. Suppose that Fig. 4.1a
depicts the initial loop. The compiler emits a warning at line 2 pointing out
that the C standard requires that the index type of an array be of type
��� rather than type ����. The programmer therefore inserts a cast, thereby
deriving the loop in Fig. 4.1b. At this point, an observant peer might remark
that the ���� type is signed on many platforms, which would enable dist
to be accessed with negative indices. The program is therefore altered by
replacing the cast (���) with (��	�
��� ���), with the intent of wrapping
character values of the range [−128,−1] to [128, 255].

The resulting program is certainly correct on platforms where ���� is un-
signed, such as Linux on PowerPC. However, for Linux on x86 and MacOS X
on PowerPC, ���� is signed. Although the programmer intended to convert
the value of *str to an unsigned value before the extension to a 4-byte quan-
tity took place, the C standard [51] dictates that the value of *str first be
promoted to ��� before the conversion to an unsigned type is performed.
Hence, dist can be accessed at indices [232 − 128, 232 − 1]∪ [0, 127], of which
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the first range is out-of-bounds. A static analysis that considers all wrapping
to be erroneous would flag this statement as possibly faulty. However, since
the programmer expects that wrapping does occur (namely when converting
from a ���� to an unsigned quantity), the warning about wrapping at the
����	�
� ���-level may be dismissed as a false positive. Hence, the analysis
of the code above should flag the out-of-bounds array access but assume that
wrapping itself is intentional.

In order to model wrapping in the analysis, we propose a reinterpreta-
tion of classic polyhedral analysis [62]. In particular, rather than checking
for wrapping in every transfer function, we refine the approximation relation
such that wrapping is mostly implicit; that is, the need for extra polyhedral
operations is largely finessed. For the few cases in which wrapping has to be
addressed in the transfer functions, we illustrate how to wrap values within
the polyhedral domain and propose an algorithm for doing so.

We commence with the definition of a subset of Core C and its concrete se-
mantics. Sections 4.4 and 4.5 explain how wrapping is supported. Section 4.6
presents a wrapping-aware polyhedral analysis. Section 4.7 discusses our ap-
proach and relates it to design choices made in other analysers.

4.2 A Language Featuring Finite Integer Arithmetic

The loop shown in Figs. 4.1a–4.1c demonstrates that it is important to clarify
where wrapping can arise in a program. In order to define an analysis of wrap-
ping, we introduce the language Sub C, which is a subset of the intermediate
language Core C that was presented on p. 26.

4.2.1 The Syntax of Sub C

The Sub C subset only features linear expressions and casts between integers.
As before, (T1 . . . Tn)∗ denotes the repetition of the symbols T1 . . . Tn.

〈Sub C〉 :: (Block)∗

〈Block〉 :: l : (〈Stmt〉 ;)∗ 〈Next〉
〈Next〉 :: jump l ;

| if 〈Type〉 v 〈Op〉 〈Expr〉 then jump l ; 〈Next〉
〈Op〉 :: < | ≤ | = | �= | ≥ | >
〈Expr〉 :: n | n * v + 〈Expr〉
〈Stmt〉 :: 〈Size〉 v = 〈Expr〉

| 〈Size〉 v = 〈Type〉 v
〈Type〉 :: (uint | int) 〈Size〉
〈Size〉 :: 1 | 2 | 4 | 8

A Sub C program consists of a sequence of basic blocks, with execution
commencing with the first block. Each basic block consists of a sequence of
statements and a list of control-flow instructions. The 〈Stmt〉 production is
restricted to the two statements of interest, namely the assignment of linear
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Basic Blocks.

[[ l : s1; . . . sn; ]]�Blockσ = [[ lookupNext(l) ]]�Next([[ sn ]]�Stmt(. . . ([[ s1 ]]�Stmtσ) . . .))

Control Flow.

[[ jump l ]]�Nextσ = [[ lookupBlock(l) ]]�Blockσ

[[ if t s v op exp then jump l ; nxt ]]�Nextσ ={
[[ lookupBlock(l) ]]�Blockσ if val8s,t(σs(addr(v))) op val8s,t([[ exp ]]�,s

Exprσ)

[[ nxt ]]�Nextσ otherwise

Expressions.

[[ n ]]�,s
Exprσ = bin8s(n)

[[ n ∗ v + exp ]]�,s
Exprσ = bin8s(n) ∗8s σs(addr(v)) +8s [[ exp ]]�,s

Exprσ

Assignment.

[[ s v = exp ]]�Stmtσ = σ[addr(v)
s
→ [[ exp ]]�,s

Exprσ]

Type Casts.

[[ s1 v1 = t s2 v2 ]]�Stmtσ = σ[addr(v1)
s1
→ bin8s1(val8s2,t(σs2(addr(v2))))]

Fig. 4.2. Concrete semantics of Sub C.

expressions to a variable and a type cast. Variables do not need to be declared,
but each variable may only be used with one size, which is specified in bytes.
In particular, the assignment statement and the conditional require that all
variables occurring be of the same size. As before, variables may be used as
a uint (unsigned integer) in one statement and as an int (signed integer) in
another.

4.2.2 The Semantics of Sub C

Figure 4.2 presents the concrete semantics of the Sub C language. The absence
of functions simplifies the concrete semantics as the mapping from program
variable v to its address addrθ(v) in the call stack θ is replaced by a simpler
address map addr : X → [0, 232 − 1]. This map defines a one-to-one relation-
ship between a polyhedral variable v and a program variable. Like addrθ, the
map addr maps different variables to non-overlapping memory regions, an as-
sumption that makes Sub C independent of the endianness of an architecture.

The concrete semantics manipulates the store mainly by operations on bit
vectors; only in the conditional and the cast are bit vectors interpreted as
numbers. In these cases, the signedness of the variables can actually influence
the result. In particular, the type t of the cast determines if the source bit vec-
tor is sign-extended (if t = int) or zero-extended (if t = uint) when s1 ≥ s2.
We now proceed by abstracting this semantics to an abstract semantics that
operates on polyhedra.
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Fig. 4.3. The difference between a signed and an unsigned access can be interpreted
as a wrap of negative values to the upper range in an unsigned access.

4.3 Polyhedral Analysis of Finite Integers

Two’s-complement arithmetic exploits the wrapping behaviour of integer vari-
ables that are confined to a fixed number of bits. For instance, subtracting 1
from an integer is equivalent to adding the largest representable integer value.
In fact, the binary representation of the signed integer −1 is identical to that
of the largest unsigned integer of the same size. In the context of verification,
this dichotomy in interpretation cannot be dismissed since variables in C may
be used as both signed and unsigned quantities.

Accessing the same bit sequence as either a signed or unsigned integer
corresponds to a wrapping behaviour in that the negative range of the signed
integer wraps to the upper range of an unsigned integer, as illustrated in
Fig. 4.3. This wrapping behaviour of finite integers creates a mismatch against
the infinite range of polyhedral variables. We present our solution to this
mismatch in two parts: Section 4.4 presents a concretisation map between
the polyhedral domain and the bit-level representation of variables. This map
wraps values of abstract variables implicitly to finite sequences of bits, thereby
alleviating the need to check for wrapped values each time a variable is read or
written. In contrast, Sect. 4.5 details an algorithm that makes the wrapping
of program variables explicit in the abstract domain, which is important for
casts, and in the conditional statement, whose semantics depend on the size
and signedness of the operands.

Revisiting the Domain of Convex Polyhedra

For simplicity, the correctness argument of the analysis of Sub C is formulated
in terms of the polyhedral domain Poly rather than in the more complex
Num domain, which is a product of Poly and the multiplicity domain Mult .
In particular, it allows for the following lemma, which states that an update
operation on a polyhedron corresponds to the evaluation of a linear expression.

Lemma 1. Let P ∈ Poly and P ′ = P �xi := c ·x+d with c ∈ Zn and d ∈ Z.
Then P ′ = {〈v1, . . . vi−1, v

′
i, vi+1, . . . vn〉 | v = 〈v1, . . . vn〉 ∈ P ∧v′i = c ·v+d}.
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4.4 Implicit Wrapping of Polyhedral Variables

This section formalises the relationship between polyhedral variables and bit
sequences that constitute the program state. For simplicity, we assume a one-
to-one correspondance between the variable names in the program and the
polyhedral variables that represent their values. The values of a program vari-
able are merely bit sequences that are prescribed by the possible values of the
polyhedral variable. In order to illustrate this, suppose that x is of type ����

and P (x) = [−1, 2]. The bit represented patterns are 11111111, 00000000,
00000001, and 00000010, no matter whether x is signed or unsigned. These
bit patterns are given by bin8s(v), which turns a value v ∈ [−1, 2] into a bit
sequence of s bytes. Going further, the function bitss

a : Z → P(Σ) produces
all concrete stores in which 8s bits at address a = addr(x) are set to the value
corresponding to v ∈ P (x) as follows:

bitss
a(v) = {〈r8∗232 . . . r8(a+s)〉‖ bin8s(v) ‖ 〈r8a−1 . . . r0〉 | ri ∈ B}

Note that this definition only considers the lower 8s bits of the value v.
For instance, bits1

a(0) = bits1
a(256) since the lower eight bits of 0 and 256 are

equal. The mapping bitss
a can be lifted from the value v of a single variable

to the values 〈v1, . . . vn〉 ∈ Zn of a vector of variables 〈x1, . . . xn〉, resulting
in the stores

⋂
i∈[1,n] bits

si
ai

(vi). Here ai ∈ [0, 232 − 1] denotes the address
of the variable xi in the concrete store and si ∈ N denotes its size in bytes.
Observe that if variables were allowed to overlap, the intersection above might
incorrectly collapse to the empty set for certain vectors 〈v1, . . . vn〉 ∈ Zn. Using
this lifting, a polyhedron is now related to a set of stores by γs

a : Poly → P(Σ),
which is defined as

γs
a(P ) =

⋃
v∈P∩Zn

⎛
⎝ ⋂

i∈[1,n]

bitssi
ai

(vi)

⎞
⎠

where s = 〈s1, . . . sn〉, a = 〈a1, . . . an〉 and v = 〈v1, . . . vn〉.
The definition of γs

a provides a criterion for judging the correctness of an
abstract semantics. In addition, γs

a permits linear expressions to be evaluated
in the abstract semantics without the need to address overflows since γs

a maps
the result of calculations in the polyhedral domain to the correctly wrapped
result in the actual program. This property is formalised below.

Proposition 1. Let e ∈ L(Expr) and e ≡ c·x+d, that is, e is a reformulation
of c · x + d. If σ ∈ γs

a(P ) then σ[ai
si�→ [[ e ]]�,si

Expr] ∈ γs
a(P � xi := c · x + d).

Proof. Define πi(〈x1, . . . xi−1, xi, xi+1, . . . xn〉) = xi. Since σ ∈ γs
a(P ) there

exists v ∈ P ∩ Zn such that σ =
⋂

i∈[1,n] bits
si
ai

(πi(v)). Let P ′ = P � xi :=
c · x + d for some c ∈ Zn and d ∈ Z. By Lemma 1, there exists v′ ∈ P ′ with
πj(v′) = πj(v) for all j �= i. Since {ai, . . . ai +si−1}∩{aj , . . . aj +sj−1} = ∅
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for all j �= i, there exists σ′ ∈ γs
a(P ′) such that σ′1(a) = σ1(a) for

a ∈ [0, 232 − 1] \ {ai, . . . ai + si − 1}. Furthermore, the lemma states that
πi(v′) = c · v + d and, by the definition of γs

a, it follows that σ′si(ai) =
bin8si(c · v + d). To show that σ′si(ai) = [[ e ]]�,si

Exprσ, we find a ∈ Zn, d ∈ Z

such that e ≡ c · x + d and [[ e ]]�,si

Exprσ = bin8si(c · v + d) by induction over e:

• Let e = n. By the definition of [[ · ]]�,sExpr, [[ n ]]�,si

Exprσ = bin8si(n) = bin8si

(c · v + d), where d = n and c = 〈0, . . . 0〉. Hence e ≡ c · x + d.
• Let e = n ∗ xj + e′. Suppose that [[ e′ ]]�,si

Exprσ = bin8si(c′ · v + d′), where
e′ ≡ c′·x+d′. By the definition of [[ · ]]�,sExpr, [[ n∗xj+e ]]�,si

Exprσ = bin8s(n)∗8si

σsi(aj) +8si [[ e′ ]]�,si

Exprσ where σsi(aj) = bin8si(vj). By the definition of
bin8s, bin8s(n) ∗8si bin8si(vj) = ((nmod 28si) ∗ (vj mod 28si))mod 28si =
(n∗vj)mod 28si ; see [67, p. 42]. Similarly, (n∗vj)mod 28si +8si [[ e′ ]]�,si

Exprσ =
(n ∗ vj)mod 28si +8si bin8si(c′ · v + d′) = (n ∗ vj + c′ · v + d′)mod 28si .
Thus, set d = d′ and 〈c1, . . . cn〉 = 〈c′1, . . . c′i−1, c

′
i + n, c′i+1, . . . c

′
n〉, where

c = 〈c1, . . . cn〉 and c′ = 〈c′1, . . . , c′n〉. Hence e ≡ c · x + d.

The force of the result above is that a linear expression 〈Expr〉 over finite
integer variables can be interpreted as an expression over polyhedral variables
without regard for overflows or evaluation order. A prerequisite for this con-
venience is that all variables occurring in an expression have the same size s.
In contrast, assignments between different-sized variables have to revert to a
cast statement. In this case, and in the case of conditionals, wrapping has to
be made explicit, which is the topic of the next section.

4.5 Explicit Wrapping of Polyhedral Variables

A consequence of the wrapping behaviour of γs
a is that the effect of a guard

such as x<=y cannot be modelled as a transformation from a polyhedron P to
P �P [[x ≤ y]]. This section explains this problem, discusses possible solutions,
and proposes an efficient wrapping algorithm called wrap.

4.5.1 Wrapping Variables with a Finite Range

In order to illustrate the requirements on the wrapping algorithm wrap, con-
sider Fig. 4.4. The thick line in the upper graph denotes P = [[x + 1024 =
8y,−64 ≤ x ≤ 448]], which we suppose feeds into the guard x<=y, where x and
y both represent variables of type uint8. In order to illustrate a peculiarity
of modelling the guard, consider the point 〈x, y〉 = 〈384, 176〉 ∈ P and let
σ ∈ γs

a({〈384, 176〉}). Due to implicit wrapping in γs
a, the state σ stipulates

that val8,uint(σ1(addr(x))) = 128 and val8,uint(σ1(addr(y))) = 176. Thus, al-
though x<=y is true when interpreting x and y as uint8 in σ, the polyhedron
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Fig. 4.4. Explicitly wrapping the possible values of x to its admissible range.

{〈384, 176〉} �P [[x ≤ y]] is empty. Hence, it is not correct to model the guard
in the classic way as P �P [[x ≤ y]].

In order to model relational tests correctly, the values of expressions occur-
ring on each side of a relational operator have to be wrapped to the type pre-
scribed in a Sub C conditional. In the example, the expression y is already in
the required range [0, 255], whereas the range of x impinges on the two neigh-
bouring quadrants as indicated in the upper graph of Fig. 4.4. These quadrants
are obtained by partitioning the state P into P−1 = P �P [[−256 ≤ x ≤ −1]],
P0 = P �P [[0 ≤ x ≤ 255]], and P1 = P �P [[256 ≤ x ≤ 511]]. The result of
wrapping x can now be calculated by translating P−1 by 256 units towards
positive x-coordinates and P1 by 256 units towards negative x-coordinates,
yielding P ′ = P0 �P (P−1 � x := x + 256)�P (P1 � x := x− 256). The contri-
bution of each partition is shown as a thick line in the lower left graph, and
the grey region depicts P ′ �P [[x ≤ y]]. Observe that a more precise state P ′′

can be obtained by intersecting each translated state separately with [[x ≤ y]],
that is, by calculating (P0 �P [[x ≤ y]]) �P ((P−1 � x := x + 256) �P [[x ≤
y]])�P ((P1 � x := x− 256)�P [[x ≤ y]]). This state, depicted as the grey area
in the lower right graph, is smaller than P ′ since P−1 does not contribute at
all. Indeed, this example shows that polyhedra are not meet-distributive, that
is, P �P (P1 �P P2) �= (P �P P1) �P (P �P P2). In this work, we chose to
calculate the equivalent of P ′ in our wrapping function wrap, as it simplifies
the presentation; implementing the refined model is mere engineering.
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Fig. 4.5. The quest for an efficient wrapping of unbounded variables.

4.5.2 Wrapping Variables with Infinite Ranges

In the example given, it was possible to obtain a wrapped representation of
the values of x and y by calculating the join of three constituent state spaces.
In general, however, wrapping x and y can require the join of an infinite
number of constituent state spaces, as depicted in Fig. 4.5. Here, the line
in the upper graph depicts P = [[x + 1024 = 8y]]; that is, P denotes the
same linear relation as before, except that x is unbounded. Translating P
by i times the range of uint8 yields Pi = (P � x := x + i28 �P [[0 ≤ x ≤
255]]) �P (P � x := x − i28 �P [[0 ≤ x ≤ 255]]) for i ≥ 0. A polyhedron that
includes the sequence P ′

j =
⊔

0≤i≤j Pi can be computed using widening [62],
thereby yielding the grey area in the lower right graph. In fact, this region
is equivalent to ∃x(P ) �P [[0 ≤ x ≤ 255]], as it contains neither bounds on x
nor relational information between x and other variables. This suggests that,
rather than wrapping unbounded variables, it is cheaper and as precise to set
them to the whole range of their type. After wrapping x, it becomes apparent
that y is unbounded, too, and hence needs wrapping.

4.5.3 Wrapping Several Variables

Even though the guard x<=y used in the example of Sect. 4.5.1 involves two
variables, it was only necessary to wrap x to obtain a wrapped representation
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Fig. 4.6. Precise wrapping of two bounded variables.

of both x and y. The example of Sect. 4.5.2 hints at the fact that both variables
might need wrapping to ensure that both sides of the guard are within range.
In particular, it is not possible to translate a guard x<=y to the inequality
x− y ≤ 0 and to merely wrap x− y to [0, 255]. To illustrate this, consider the
simpler case x<=42, which is satisfied for bit sequences of x that fall within
[0, 42]. In order to evaluate x<=42, set x′ = x − 42 and wrap x′ such that
0 ≤ x′ ≤ 255. The intersection with [[x′ ≤ 0]] constrains x′ to 0, which implies
x = 42 instead of x ∈ [0, 42]. Thus, both arguments to a guard x<=y need to
be wrapped independently.
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Algorithm 1 Explicitly wrapping an expression to the range of a type.
procedure wrap(P, t s, x) where P �= ∅, t ∈ {uint, int} and s ∈ {1, 2, 4, 8}
1: bl ← 0
2: bh ← 2s

3: if t = int then /* Adjust ranges when wrapping to a signed type. */
4: bl ← bl − 2s−1

5: bh ← bh − 2s−1

6: end if
7: [l, u] ← P (x)
8: if l �= −∞∧ u �= ∞ then /* Calculate quadrant indices. */
9: ql ← �(l − bl)/2s�

10: qu ← �(u − bl)/2s�
11: end if
12: if l = −∞∨ u = ∞∨ (qu − ql) > k then /* Set to full range. */
13: return ∃x(P ) �P [[bl ≤ x < bh]]
14: else /* Shift and join quadrants {ql, . . . qu}. */
15: return

⊔
q∈[ql,qu]((P � x := x − q2s) �P [[bl ≤ x < bh]])

16: end if

The example in Fig. 4.5 showed how wrapping the unbounded x leaves
y unconstrained, and thus y has to be wrapped as well. Figure 4.6 shows
a potentially more precise solution for bounded variables in which variables
are wrapped simultaneously. Here, the bounded state space shown in grey
expands beyond the state P0 that corresponds to the actual range of the vari-
ables. The result of translating each neighbouring quadrant and intersecting
it with x ≤ y is shown in the graph on the right. Note that the join of these
four translated spaces retains no information on either x or y. While it is
possible that relational information with other variables is retained, wrapping
the variables independently has the same precision if one of the variables is
within bounds and, in particular, if a variable is compared with a constant. In
the 3000 LOC program qmail-smtp that our analysis targets, 427 out of 522
conditionals test a variable against a constant, which motivates our design
choice of wrapping variables independently.

4.5.4 An Algorithm for Explicit Wrapping

Guided by the observations made in the three examples, Alg. 1 gives a proce-
dure to wrap a polyhedral variable to the range of a given integer type. Due to
the observations in the last section, we only present an algorithm to wrap one
variable at a time. Hence, the evaluation of a guard requires two invocations
of wrap, one for each expression of the condition.

The algorithm commences by calculating the maximum bounds of the type
t s. A uint8 type, for instance, will set bl = 0 and bh = 28 = 256, while an int8
type results in the bounds bl = 0 − 28−1 = −128 and bh = 28 − 28−1 = 128.
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Line 7 calculates the bounds of x in P . If one of these bounds is infinite, line 13
removes all information on x and restrains x to [bl, bh−1]. In the case of finite
bounds, lines 9–10 calculate the smallest and largest quadrants into which the
values of x impinge. For instance, in the example of Fig. 4.4, these numbers
are ql = −1 (for the quadrant [−256,−1]) and qh = 1 (for [256, 511]). Line 12
ensures that the linear expression is simply set to its maximum bounds if more
than k quadrants have to be transposed and joined, where k is a limit that
can be tuned to the required precision. Line 14 transposes each quadrant and
restricts it to the bounds of the type. The correctness of wrap is asserted below.

Proposition 2. Given P �= ∅ and P ′ = wrap(P, t s, xi), the interval P ′(xi)
lies in the range of the type t s. Furthermore, γs

a(P ) ⊆ γs
a(P

′).

Proof. Upon return from lines 13 and 15, xi is restricted to lie between the
bounds bl and bh− 1 of the type t s; hence P ′(xi) lies in the range of type t s.

Suppose a = 〈a1, . . . an〉 and s = 〈s1, . . . sn〉, where ai = addr(xi) and si

denotes the size of xi in bytes. Let σ ∈ γs
a(P ). Then there exists 〈v1, . . . vn〉 ∈

P ∩ Zn such that σ ∈ γs
a({v}). We consider two behaviours of wrap.

• Suppose that wrap is exited at line 13. Observe that for any b ∈ B8si there
exists v ∈ {bl, . . . , bh − 1} such that bin8si(v) = b. Hence, there exists
v′ = 〈v1, . . . v

′
i, . . . vn〉 with v′

i ∈ [bl, bh − 1]∩Z and bin8si(v′
i) = bin8si(vi).

Observe that v′ ∈ P ′ = ∃x(P ) �P [[bl ≤ x < bh]] and v′ ∈ Zn. Hence
bitss

a(vj) = bitss
a(v′j) for all j ∈ [1, n] and it follows that σ ∈ γs

a(P
′).

• Suppose now that wrap exits at line 15. Observe that vi ∈ [l, u], and hence
there exists q ∈ [ql, qu] such that vi−q2s1 ∈ [bl, bh−1]. Hence, there exists
v′ = 〈v1, . . . v

′
i, . . . vn〉 ∈ P ′ such that v′

i = vi−q2si . Since bin8si(q2si) = 0,
it follows that bin8si(v′i) = bin8si(vi−q2si) = bin8si(vi). Thus σ ∈ γs

a(P ′).

Note that the translation of quadrants using P � x := x + q2s can be
implemented by a potentially cheaper affine transformation [14]. However, the
solution shown can be readily implemented using other polyhedral domains
[169,172] that do not directly support affine translations.

4.6 An Abstract Semantics for Sub C

This section defines the abstract semantics of Sub C by defining a set of
abstract transfer functions. The idea is to calculate a single polyhedron P for
each label l, where each label marks the beginning of a basic block. Starting
with the unrestricted polyhedron R|X | for the first basic block and with the
empty polyhedron ∅ ⊆ R|X | for all others, the abstract transfer function for
basic blocks is evaluated repeatedly until a (post-)fixpoint is reached. Once a
fixpoint is reached, each state σ that may arise in the concrete program at l
satisfies σ ∈ γs

a(P ), where P is the polyhedron associated with l.



84 4 Taming Casting and Wrapping

Basic Blocks.

[[ l : s1; . . . sn; ]]�BlockP = [[ lookupNext(l) ]]�Next([[ sn ]]�Stmt(. . . [[ s1 ]]�StmtP . . .))

Control Flow.

[[ jump l ]]�NextP = {〈P, l〉}

[[ if t s v op exp then jump l ; n ]]�NextP = {〈P then , l〉} ∪ [[ n ]]�NextP
else

where P ′ = P � y := [[ exp ]]�Expr where y ∈ X T fresh

P then = ∃y(cond(P ′, t s, v, y, op))

P else = ∃y(cond(P ′, t s, v, y, neg(op)))

cond(P, t s, x, y, op) =

{
(P ′′ �P [[x < y]]) �P (P ′′ �P [[x > y]]) if op ∈ {�=}
(P ′′ �P [[x op y]]) otherwise

where P ′ = wrap(P, t s, x)
P ′′ = wrap(P ′, t s, y)

Expressions.

[[ n ]]�Expr = n

[[ n ∗ v + exp ]]�Expr = n v + [[ exp ]]�Expr

Assignments.

[[ s v = exp ]]�StmtP = P � v := [[ exp ]]�Expr

Type Casts.

[[ s1 v1 = t s2 v2 ]]�StmtP =

{
P ′ if s1 ≤ s2

wrap(P ′, t s2, v1) otherwise
where P ′ = P � v1 := v2

Fig. 4.7. Abstract semantics of Sub C.

Specifically, given a polyhedron P that is valid at the beginning of a basic
block, the first rule in Fig. 4.7 specifies how P is modified by the statements
before it is fed into the evaluation of the control-flow statements of the basic
block at label l. Specifically, [[ lookupNext(l) ]]�NextPl yields tuples such as
〈P ′

l′ , l
′〉, indicating that P ′

l′ must be joined with the existing state at l′. For
instance, jump l merely returns the current state paired with the target
label. In contrast, the conditional calculates two polyhedra, P then (which is
returned for the label l) and P else (which is used to evaluate other control-
flow instructions). The calculation of P else makes use of a function neg, which
negates a relational operator; for example, neg(′<′) = ′≥′. The auxiliary
function cond wraps the two arguments of the relational operator op. Like
wrap, this function can only wrap single polyhedral variables, which requires
that exp be assigned to a temporary variable y that is projected out once the
guard is applied.

Observe that enforcing the guard by intersecting with [[x op y]] has the
same effect as wrapping the expression exp itself since y = exp holds in P ′.
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However, if wrap returns from line 13 in Alg. 1, the variable y is merely set to
the bounds of the type. In this case, wrap discards the relational information
between y and exp, and the intersection with [[x op y]] does not affect the
value of exp in P ′′, thereby ignoring the condition. An alternative treatment
for expressions exp that exceed k quadrants would be to discard any previ-
ous information on variables in exp using projection and to modify wrap to
intersect P with [[bl ≤ exp < bh]]. In this case, the information in the guard
could be retained by intersecting with [[x op exp]] at the cost of discarding any
previous bounds on the variables of exp.

The following proposition states the correctness of the conditional.

Proposition 3. If val 8s,t(σs(addr �(xi))) op val 8s,t([[ exp ]]�,sExprσ) and σ ∈
γs
a(P ), then 〈P ′, l〉 ∈ [[ if t s xi op exp then jump l; n ]]�NextP and σ ∈ γs

a(P ′).

Proof. Since σ ∈ γs
a(P ), there exists v ∈ P ∩ Zn such that σ ∈ γs

a({v}).
Let P̂ = cond(P̄ , t s, xi, y, op), where P̄ = P � y := [[ exp ]]�Expr. Then
〈v1, . . . vn, v̂〉 ∈ P̄∩Zn+1, where 〈v1, . . . vn〉 = v, v̂ = c·v+d, and exp ≡ c·x+d.
By Prop. 2, there exists v′ = 〈v1, . . . vi−1, v

′
i, vi+1, . . . vn, v̂′〉 ∈ P̂ ∩ Zn+1

such that bin8s(vi) = bin8s(v′
i) = σ8s(addr(xi)). By following Prop. 1,

bin8s(v̂) = bin8s(v̂′) = [[ exp ]]�,sExprσ. Furthermore, v′i and v̂′ lie in the range of
t s and thus val8s,t(σ8s(addr(xi))) = v′

i and val8s,t([[ exp ]]�,sExprσ) = v̂′. Hence
v′ ∈ P̂ �P [[x op y]] for op /∈ {�=}. With P ′ = ∃y(P̂ �P [[x op y]]), it follows that
σ ∈ γs

a(P
′). The argument is similar for op ∈ {�=}.

The fall-through case can be shown to be correct by a similar argument.
Due to the modulo nature of γs

a, the evaluation of linear expressions and
assignments resembles that of classic polyhedral analysis in that linear expres-
sions in the program are simply reinterpreted as expressions over polyhedra
variables. This holds true even for casts between different-sized variables as
long as the target variable is smaller. Assigning smaller variables to larger
ones, on the contrary, requires that wrapping be made explicit since a value
that exceeds the range of the smaller source variable would wrap in the actual
program, whereas it might not exceed the range of the larger target variable.

We conclude this section with a correctness proof for the cast statement.

Proposition 4. Suppose σ ∈ γs
a(P ) and σ′ = [[ s1 xi = t s2 xj ]]�Stmtσ, and let

P ′ = [[ s1 xi = t s2 xj ]]�StmtP . Then σ′ ∈ γs
a(P

′).

Proof. Since σ ∈ γs
a(P ), there exists v = 〈v1, . . . vn〉 ∈ P such that σ ∈

γs
a({v}). Let 〈v′1, . . . v′n〉 ∈ P � xi := xj , where v′i = v′j and v′

k = vk for
all k �= i. By Lemma 1, σ′sk(addr(xk)) = σsk(addr(xk)) for all k �= i.
By the definition of [[ · ]]�Stmt, we need to show that σ′s1(addr(xi)) =
bin8s1(val8s2,t(σs2(addr(xj)))).

• Suppose s1 ≤ s2. Then bin8s1(x) = bin8s1(val8s2,t(bin8s2(x))). But
bin8s1(v′i) = σ′s1(addr(xi)) and bin8s2(vj) = σs2(addr(xj)); thus σ′ ∈
γs
a(P ′) follows.
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x 42x=-1 R=wrap(Q,uint8,x)

+

yes

no

P

Q

S

T

R

U=T x := x-1
U

Fig. 4.8. Precision loss incurred by joining flow paths.

• Suppose now that s1 > s2. By Prop. 2, there exists 〈v1, . . . v̂i, . . . vn〉 ∈ P ′

such that bin8s2(v̂i) = bin8s2(vj) and v̂i lies in the range of the type
t s2; that is, val8s2,t(bin8s2(v̂i)) = v̂i. But since bin8s2(v̂i) = bin8s2(vj) =
σ′s1(addr(xj)), it follows that σ′s1(addr(xi)) = bin8s1(v̂i) as required.

We conclude this chapter with a discussion of the concretisation function γs
a.

4.7 Discussion

The existence of a concretisation map γs
a begs the question of whether an

abstraction map αs
a : Σ → Poly can be defined. For classic polyhedral analysis

[62], it is well known that no best abstraction exists for certain shapes, such as
a disc (see [59] or Sect. 3.3.1). In the context of our analysis, the set of concrete
states Σ is finite, which implies that only a finite number of abstract states are
required to represent the concrete states. However, a given set of states still
has no single best abstraction. Consider σ ∈ Σ with σ1(addr(x)) = 11111111,
P1 = [[x = −1]], and P2 = [[x = 255]]. Although σ ∈ γs

a(P1) = γs
a(P2), the

polyhedra P1 and P2 are incomparable. As a consequence, the meet operation
can only be applied after wrap has translated the range of x in P1 to the same
quadrant [0, 255] as that of P2, which makes the two polyhedra comparable.

Since different polyhedra can describe the same set of concrete states,
precision can be lost when joining branches in the control-flow graph. Consider
the following loop whose control-flow graph is shown in Fig. 4.8:

�������� �	
� x = (�������� �	
� ) -1;
�	�
� (x>=42) x--;

The loop is entered with P = [[x = −1]], the largest value an unsigned
variable can take. As the loop invariant x ≥ 42 interprets x as an unsigned
quantity, Q = P�P U is wrapped to R = wrap(Q,uint8, x) = [[x = 255]]. After
evaluating the loop body, a precision loss occurs when P and U = [[x = 254]]
are joined to obtain P �P U = [[−1 ≤ x ≤ 254]], as x cannot fall below 42. One
solution to this particular problem is to unroll the loop once, which avoids
the join of the two different representations [[x = −1]] and [[x = 255]].
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Observe that wrap does not compromise the termination behaviour of the
analysis, as wrap is monotonic. Monotonicity is guaranteed, as the output
polyhedron of wrap is a join of k quadrants that form a partitioning of the
input polyhedron. If the input state grows in such a way that more than n
quadrants need to be translated and joined, the output is a polyhedron that
includes all joins of k < n quadrants.

Furthermore, observe that wrap is idempotent and, in particular, is the
identity if the variable is in range. An important consequence is that our
solution is as precise as classic polyhedral analysis if all variables stay within
the range of their types.

An interesting benefit of γs
a is that the possible values of a byte x can be

represented as either [[−128 ≤ x ≤ 127]] or [[0 ≤ x ≤ 255]]. For example, the
refinement of the analysis to handle C string buffers presented in Chap. 11
does not model individual array elements but tracks a single nul position (a
character with value zero) within the array. Even though ���� is often signed,
the range [0, 255] can be returned when reading a byte from the array, which
can then be refined using the nul position to [1, 255] whenever the access
lies in front of the nul position (see Fig. 12.5 on p. 224 for an example). If
a signed range had to be returned, it would include the nul character since
[−128,−1]∪[1, 127] = [−128, 127] is the best convex approximation. Without
the ability to model an unknown byte as a strictly positive interval, it is not
possible to prove that a loop iterates until the first nul character is found.

4.7.1 Related Work

A number of works have addressed the analysis congruences [8,85,87]; that is,
the inference that a variable x can only take on values such that x ≡ b mod m.
Although affine relationships mod 2n between variables can be inferred be-
tween finite integer variables [135], little work exists in the more general con-
text of polyhedral analyses [171]. Cousot et al. use a two-tier approach [60]
in the context of the Astrée analyser that is based on the definitions of the C
standard [51]. For signed integers, any wrapping is erroneous. In this case,
each time a variable is set, its range is checked for overflows. Overflows of
unsigned integers are assumed to be intentional, as wrapping may result from
bit-level operations. This approach requires a separation of signed and un-
signed variables, which raises the question of how the mixing of signed and
unsigned arithmetic is handled. Assuming that using a variable as both signed
and unsigned integers is incorrect and thereby rejects many valid C programs.
Indeed, an analysis of our example would lead to the misleading warning about
converting from a signed to an unsigned integer.

As far as we are aware, wrapping of integer variables is ignored in the
SLAM analyser [18], which renders it unsound with respect to conditionals.
It was pointed out by Cook et al. in the talk of [52] that this deficiency is
currently being addressed.
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Overlapping Memory Accesses and Pointers

This chapter lifts the restrictions that were imposed on the SubC language,
which was used in the last chapter to illustrate the relationship between ab-
stract and concrete semantics. Lifting the analysis to the full expressiveness
of Core C not only introduces structured memory and arrays but also casting,
pointers and pointer arithmetic. This can of worms is tackled in two steps.
Section 5.1 introduces a representation of memory based on fields, where the
value of each field is represented by an abstract variable x ∈ X . Section 5.3 en-
hances this model with abstract addresses (so-called l-values), which enables
the analysis of pointers and pointer arithmetic.

5.1 Memory as a Set of Fields

An analysis of a language like C does not allow for a simple bijection between
concrete variables in the program and abstract variables in the abstract do-
main. A more complex model of the program memory is required for the
following three reasons.

Accesses with Incompatible Types

Programming languages commonly use types to provide a partial correctness
guarantee by enforcing a certain interpretation of a memory location. In con-
trast, types in C merely specify the semantics of an access to memory; in par-
ticular, it is possible to access the same memory region with different types.
For instance, a 4-byte memory region may be accessed as a signed or unsigned
integer or as a pointer. Furthermore, it is possible to read a variable of type
uint8 from an address that was written as uint16. In this case, either the
upper or lower 8 bits of the larger variable are read, depending on the archi-
tecture. Overlapping accesses are often used in C programs to initialise data
structures efficiently by writing 4-byte quantities even though the declared
elements of the underlying structure are smaller. Hence, dealing with accesses
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of incompatible types and sizes is not only required to ensure soundness but
also important to ensure precision. Access to the same memory region with
different-sized types is modelled by using one abstract variable for each access
size, which requires care to update these overlapping variables consistently.

Limiting the Number of Abstract Variables

Another challenge in the analysis of generic C programs is to limit the
amount of information inferred, specifically to bound the number of abstract
variables X used at any given point. This is an important efficiency consider-
ation in the presence of large data structures such as arrays since polyhedra
are only tractable when the number of variables does not exceed a few dozen,
whereas character arrays easily contain several thousand elements. Further-
more, arrays that are stored in dynamically allocated memory may only have
a symbolic upper bound so that it is not clear how many abstract variables
are required to describe the contents of the array. However, as the example in
the introduction shows, it is not always necessary to argue about individual
array elements in order to verify correct memory management, which begs
the question of which parts of a memory region are relevant for verification.

Handling Dynamically Allocated Memory

A third challenge arises due to the program’s allocation of a different number
of memory regions depending on the input to the program. Since the number
of allocated memory regions is limited only by the available memory, it is
impossible to represent every dynamically allocated memory region explicitly.
Our analysis summarises memory regions that were allocated at the same
location in the program. Thus, an abstract dynamic memory region may relate
to several (or possibly zero) concrete memory regions.

After presenting the conceptual ideas of how polyhedral variables represent
the content of memory regions, Sect. 5.2 introduces access trees that model
overlapping value variables, which Sect. 5.3 enriches to handle pointers.

5.1.1 Memory Layout for Core C

Motivated by the three requirements presented above, this section details how
the contents of memory regions in the program are defined by the abstract
variables in the corresponding numeric domain.

A concrete program operates on two kinds of memory regions, namely
declared variables M and dynamically allocated memory. With respect to the
former, observe that our analysis is fully context-sensitive in the sense that a
function is reanalysed for every new call site. This approach disallows recursive
function calls, as a recursive cycle can lead to an unbounded call stack in the
analyser. However, the absence of recursive functions makes for a simple model
in that every declared variable m ∈ M exists either once in the program,
namely when the function in which it is declared is on the stack, or not at
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all. In contrast to these automatic variables, dynamically allocated memory
regions in the concrete program are summarised into a finite set of abstract
memory regions D ⊆ Label , where D ∩M = ∅ and every l ∈ D denotes the
location of a malloc instruction that allocated the concrete memory regions.
In order to formalise this relationship, we introduce two mappings, namely
L : M∪D → A and ρ : A → P([0, 232 − 1]). The former map, L, assigns an
abstract address to each memory region. An address a ∈ A is called abstract
since it may correspond to several concrete addresses, for instance when the
abstract address denotes a dynamically allocated memory region. In order to
express this property of abstract addresses, define the address map ρ to map
each abstract address to a set of concrete addresses. This function is further
lifted to operate on sets of abstract addresses; that is, ρ(A) =

⋃
a∈A ρ(a)

for any A ⊆ A. These two maps are sufficient to express the addresses at
which an abstract memory region m ∈ M ∪ D manifests itself in a concrete
store σ. What remains is to specify the content of abstract memory regions.
To this end, let F : M∪ D → P(N × N × X ) denote the set of fields of a
memory region. Given a memory region m ∈M∪D, a field 〈o, s, xi〉 ∈ F (m)
indicates that the abstract variable xi ∈ X represents s bytes starting at byte
offset o. As was pointed out, the bytes of a memory region do not have to be
completely covered by fields; conversely, a given byte might be modelled by
several abstract variables in the case of overlapping fields.

Note that the setsM and D are fully defined by the program. Furthermore,
L : M∪D → A is initialised at the start of the analysis to assign a unique
abstract address to each memory region. In contrast, the map F determines
which parts of the memory regions are relevant to the verification task and
which fields may be omitted for efficiency. The choice of F therefore requires
insight into the behaviour of the analysed program and thus cannot be chosen
up front at the beginning of the analysis. For the sake of this section, we
simply assume that F is fixed at the start of the analysis by some oracle to
include all fields that are relevant.

In order to illustrate the use of the maps L and F , consider the C ������

declaration presented on the left of Fig. 5.1. The structure details the proper-
ties of a network socket connection, namely the port number, a 16-bit integer,
and the IP address, a 4-byte value that is often accessed as four separate
bytes. Suppose that the fields F (ip_info) are given as in the figure and that
L(ip_info) = am, where am ∈ A is the unique abstract address associated
with the variable ip_info. Assuming that this variable is automatic (that is,
locally declared in a function f), its address depends on the position of f in
the current call stack. If the function is on the stack, ρ(am) = {a}, where
a ∈ [0, 232 − 1] is the address of ip_info in the stack frame of f . Given a
vector of possible values v ∈ [[N ]], the resulting stores are memρ(v), where
memρ is defined as follows:
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������ {

������	
 ���� addr [4];

������	
 ��
�� port;

} ip_info;

(���) ip_info = 0;

ip_info.port = 80;

ip_info.addr [3]=127;

ip_info.addr [0]=1;

8 7 6 5 4 3 2 1 0

LSBMSB �

size(ip_info) = 6

x0

x2 x1

x3

F (ip_info) = {〈0, 4, x0〉, 〈0, 1, x1〉, 〈3, 1, x2〉, 〈4, 2, x3〉}

Fig. 5.1. An example of overlapping write accesses. Indexing into a memory region
starts on the right to reflect the choice of a little-endian architecture. Note that
the cast is not actually accepted by most C compilers. However, for the sake of
readability, we chose this notation rather than the equivalent *((���*)&ip_info)=0.

memρ(v) =
⋂

m∈M∪D

⎛
⎝ ⋂

a∈ρ(L(m))

⎛
⎝ ⋂

〈o,s,xi〉∈F (m)

bitss
a+o(πi(v))

⎞
⎠
⎞
⎠

As before, let πi(〈v1, . . . vi−1, vi, vi+1, . . . vn〉) = vi such that bitss
a(πi(v))

creates all stores where s bytes at address a are restricted to vi. Since no
two memory regions in M ∪ D overlap, the possible stores for all memory
regions can be expressed in a compositional way as implemented with the
outermost intersection. Similarly, each memory region m at the abstract ad-
dress am ∈ L(m) gives rise to several sets of stores, one for each concrete
address a ∈ ρ(am) at which the memory region is currently live in the pro-
gram. This is expressed by the second intersection. The innermost intersec-
tion ranges over all fields of a single memory region. In the case F (m) = ∅,
we assume that the innermost intersection reduces to Σ, the neutral element.
While memory regions M∪ D never overlap, the individual fields within a
single memory region may overlap if they are of different sizes. Thus, the in-
nermost intersection can collapse to the empty set if overlapping fields are
not updated in a coherent way. For instance, suppose the instructions on
the upper right of Fig. 5.1 are executed by (incorrectly) updating the initial
state N to N ′ = N � x0 := 0 � x3 := 80 � x1 := 1 � x2 := 127. The re-
sult {v} = [[N ′]] implies memρ(v) = ∅ due to, for instance, x0 and x2 since
bits4

a(0) ∩ bits1
a+3(127) = ∅, assuming that {a} = ρ(L(ip_info)). To imple-

ment the semantics of the byte-wise assignments correctly, the overlapping
variable x0 must be updated, too. This task is addressed in the next section.
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5.2 Access Trees

Whenever a sequence of bits is represented by more than one abstract variable,
an update of one abstract variable must update the others since the possible
bit sequence in the actual store is determined by the values that all variables
admit. This was illustrated in the previous section, where the variables x0

and x2 were not updated together, which led to an incorrect result. A simple
strategy to ensure correct updates is to remove all information on all fields that
overlap with the one that is being updated. However, this approach is rather
imprecise. For instance, the update of line 7 sets x2 to 127 but would have
to project out the overlapping variable x0, which means that all information
about addr[0], addr[1], and addr[2] is lost. This section details a more
refined update strategy, which is exact in the case of the example above. The
idea is to propagate information between the different variables of fields that
overlap, thereby ensuring that all variables that determine the bits of a certain
memory location are set to a precise value.

Allowing arbitrary overlapping fields creates a plethora of ways to propa-
gate information between fields, which makes the design of correct and precise
algorithms a difficult task. A more elegant and principled approach is possible
when restricting the possible position of fields such that their offset within a
memory region can only be a multiple of their size, a requirement known as
alignment. This restriction makes it possible to view possible field locations as
nodes of a complete binary tree. An example of this view is depicted in Fig. 5.1,
where each field of s bits is either a leaf or has exactly two children of s/2 bits.
Suppose now that the updated information of the field 〈3, 1, x2〉 ∈ F (ip_info)
must be propagated. The fields affected by an update of x2 are simply all its
parents and children:

t0
x0

t1
x2

The slice of the full binary tree shown contains the field x0 that overlaps
with x2. The idea is to propagate information from the node x2 recursively to
its parents and children in order to eventually update all overlapping fields. To
this end, we populate the empty nodes of the slice with temporary variables
t0, t1 ∈ X T . However, the temporary t0 is irrelevant to the task of propagating
information from x2 to x0 and can be removed, yielding the following slice:

x0

t1
x2

This slice is called an access tree with pivot x2. Note that the pivot node is
marked with thick borders and may have children as well as parents. Further-
more, the variable in the pivot node might be temporary. In general, the set
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of access trees is denoted as AT , and we assume the existence of a function
accessF : N × {1, 2, 4, 8} ×M∪ D → AT that generates an access tree from
the fields F (m) of a variable m ∈ M ∪ D. The function accessF (o, s,m) is
defined for all aligned offsets o, that is, o mod s = 0.

Given an access tree, there are two principal ways of propagating infor-
mation. Firstly, information can be propagated from the parents and children
to the pivot node, and secondly, new information in the pivot node can be
used to update other variables in the tree while retaining as much informa-
tion as possible in the parents. We consider each direction in turn. The first
approach can refine the simple strategy of projecting out overlapping fields
on write accesses. Suppose that x0 is set to zero, while x2 is projected out to
ensure that the information in x2 does not contradict that in x0. When x2

is read, information from x0 can be propagated to x2 by passing the access
tree from above to the function prop : {1, 2, 4, 8} × AT × Num → X × Num
detailed in Fig. 5.2. This function returns the pivot variable x2 and a do-
main in which the variables in the access tree are refined according to
how they overlap. In the context of our example, let at denote the access
tree; then the call 〈x2, N

′′〉 = prop(1, at, N) invokes fromUpper recursively
to calculate first N ′ = N �N {x0 − 65535 ≤ 65536t1 ≤ x0} and then
N ′′ = N ′ �N {t1 − 255 ≤ 256x2 ≤ t1}, yielding N ′′(x2) = [0, 0]≡64 as ex-
plained in detail below. In many cases, expressing linear relationships between
two fields is only possible if the value of a field is within the bounds of an
unsigned integer or if two adjacent fields are both within the bounds of a
signed or unsigned integer. The tests to check these conditions are expressed
by the following predicates:

inURange(N,x, s) = l �= −∞∧ u �= ∞∧ 0 ≤ l ∧ u < 28s

where [l, u]≡d = N(x)
inSRange(N,x, s) = l �= −∞∧ u �= ∞∧−28s−1 ≤ l ∧ u < 28s−1

where [l, u]≡d = N(x)
pairInRange(N,x1, s1, x2, s2) = inURange(x1, s1) ∧ inURange(x2, s2) ∨

inSRange(x1, s1) ∧ inSRange(x2, s2)

Each predicate is applied to a numeric element N ∈ Num, domain variables
x, x1, x2 ∈ X , and the size of the field in bytes. Note that inSRange, which
checks if the given variable is in the range of a signed integer, is only used for
pairInRange.

The predicates are necessary to avoid incorrect refinement of the domain.
For instance, a linear relationship between the upper half of a signed 16-bit
value and an 8-bit unsigned value does not exist in general, as the upper
half of the larger variable might indicate that the values [−1, 0] are possible,
while the unsigned 8-bit variable indicates [0, 255]. Both ranges allow the bit
patterns 11111111 and 00000000, but no refinement of the unsigned value
is possible without explicitly wrapping it. While it is clear in this example
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prop(s, εAT , N) = (x, N �N {0 ≤ x < 28s})
where x ∈ X T fresh

prop(s,
tu

x
tl

, N) = (x,fromUpper(s,
tu

x ,

fromLower(s, x
tl

)))

fromLower(s, x , N) = if ∃x(N) �P N
then N �N {0 ≤ x < 28s}
else N

fromLower(s, x0

x1 x2

t1 t2

, N) =

let N ′ = fromLower(s/2, x1

t1
, fromLower(s/2, x2

t2
, N))

in if ¬pairInRange(N ′, x0, s, x1, s/2) then N ′ else
if inURange(N ′, x2, s/2)

then N ′ �N {x0 = 28s/2x1 + x2}
else N ′ �N {28s/2x1 ≤ x0 < 28s/2(x1 + 1)}

fromUpper(s, x , N) = N

fromUpper(s,

tu

x1

x0 , N) =

let N ′ = fromUpper(2s,
tu

x1 , N)
[l, u] = N(x1)

in if −∞ �= l ∧ u �= ∞∧ �l/28s� = �u/28s� ∧ inURange(N ′, x0, s/2)
then N ′ �N {x0 = x1 − (�l/28s�28s)} else N ′

fromUpper(s,

tu

x1

x0 , N) =

let N ′ = fromUpper(2s,
tu

x1 , N)
N ′′ = if ∃x0(N

′) �P N ′ then N ′ �N {0 ≤ x0 < 28s} else N ′

in if pairInRange(N ′′, x0, s, x1, 2s)
then N ′′ �N {x1 − 28s < 28sx0 ≤ x1} else N ′′

Fig. 5.2. Read operations on access trees. The variable tu represents a wider tree
than the dotted borders suggest; tl, t1, and t2 represent two trees of half-width. Each
function is called with a pivot node, which is s bytes wide and drawn in bold. The
empty access tree εAT ∈ AT denotes a tree with no field variables.
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that the unsigned variable could be wrapped to a signed range, in general it
is not clear which of the two variables should be wrapped to retain optimum
precision. We therefore chose to avoid wrapping when propagating information
among fields, which implies that in some cases the values of overlapping fields
cannot be related with each other.

However, in some cases variables are completely unrestricted such that
the predicates above do not hold even though these variables can readily be
refined by other overlapping fields. In particular, the accessF function creates
trees with unbounded temporary variables that prohibit any propagation of
information. To circumvent this problem, the functions in Fig. 5.2 restrict a
variable x to its unsigned range if ∃x(N) �N N ; that is, if N contains no
information on x.

Treating unbounded variables specially is a prerequisite even in the ex-
ample above. Specifically, consider the second recursive call to fromUpper ,
namely

fromUpper(2,
x0

t1 , N)
Here, the pivot variable is the unbounded temporary variable t1, which

is meant to be refined with respect to the upper 16 bits of x0. Since t1 is
unbounded, ∃t1(N) = N holds and the variable is restricted to the unbounded
range of a 16-bit integer variable, namely 0 ≤ t1 < 216. This in turn forces
the predicate pairInRange to hold such that t1 and x0 can be related by
x0 − 216 < 216t0 ≤ x0, which, after integral tightening, implies that t1 = 0.
This refined numeric domain is returned to the caller, which in fact is the first
invocation of fromUpper , namely

fromUpper(1,
t1

x2 , N)

Again, x2 is unbounded since it was projected out when the 32-bit field
x0 was set to zero. Hence, after performing the same updates, x2 is restricted
to t1 − 28 < 28x2 ≤ t1, which, after integral tightening, implies that x2 = 0.
Using similar tests, the prop function is able to propagate information up
to larger fields. For instance, executing the last two statements in Fig. 5.1
updates the numeric domain such that x2 = 127 and x1 = 1, whereas x0

is projected out during the updates as it overlaps. Reading the 32-bit field
creates the following access tree:

x0

t1 t2
x2 t3 t4 x1

Note that the temporaries t3 and t4 cannot be removed from this ac-
cess tree, as they are used to define the relationship between x2 and x1

and their overlapping fields. In particular, the function fromLower is called
recursively, which restricts the unbounded variables t3 and t4 to their un-
bounded ranges [0, 255] such that t1 and t2 can be defined recursively from
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the variables x2, t3 and t4, x1, respectively. The final bounds of x0 that
can be inferred in this case can be expressed in hexadecimal notation as
0x80000001 ≤ x0 ≤ 0x80FFFF01. By projecting out the overlapping field
x0 when updating x1 and x2, an obvious precision loss has occurred. Instead
of removing information on overlapping fields, a more precise result can be
obtained by considering the second alternative of updating them.

To this end, consider the task of executing line 7 in Fig. 5.1 by updating
x2 without losing information contained in x0. This update is performed by
applying the function update : {1, 2, 4, 8}×X ×AT ×Num → Num in Fig. 5.3.
Specifically, the call N ′ = update(s, y, at, N) updates the numeric domain N
to N ′ such that the pivot node x2 of the access tree at is set to the value of
y ∈ X . Here, s denotes the size of the pivot node in bytes.

In order to illustrate this update, reconsider the access tree for the third
byte of ip_info:

x0

t1
x2

After updating x2 to the new value y, the changed value must be propagated
to the upper 8 bits of t1. This case is handled by the last equation of toUpper
in Fig. 5.3, which sets t1 such that, in hexadecimal notation, 0x8000 ≤ t1 ≤
0x80FF. This result is used to update x0 to 0x80000000 ≤ x0 ≤ 0x80FF0000.
While accessing the first four bytes of ip_info now results in a more precise
value x0, it is still not optimal since it is known that bits 16 to 23 are zero.
Similarly to propagation to the pivot node, propagation from the pivot node
suffers from loss of precision incurred by unbounded, temporary variables.
In contrast, precision cannot be regained by treating unbounded variables
specially. Instead, information from larger fields must be propagated to tem-
porary variables, which can be done by calling fromUpper on all parents of
the pivot node. In the example, we calculate

fromUpper(2,
x0

t1 , N)

which propagates the fact that x0 = 0 to the field t1. Given this information,
the call to toUpper now detects that the upper 8 bits of t1 are constant (since
�l/28� = �u/28�, where [l, u]≡d = N(t1)) and hence performs the update of
t1 by subtracting �l/28� = 0 from t1 and adding the scaled value of x2; that
is, it calculates N ′ = N � t1 := 28x2 + t1 − 0. The result of this calculation
is used to update x0, yielding x0 = 0x80000000. The strategy of propagating
information to all parents of the pivot node before performing the updates is
encapsulated by the function update in Fig. 5.3. Here the function fromUpper
is called whenever the pivot node for which update is called has a parent –
that is, whenever tu is not the empty access tree εAT . Note that no prior
propagation of information is necessary for the dual case of updating children
as implemented by toLower in Fig. 5.3.
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update(s, ev, εAT , N) = N

update(s, ev,
tu

x
tl

, N) =

let N ′ = if tu = εAT
then N
else fromUpper(2s, tu , N)

in toLower(s, x
tl

, toUpper(s,
tu

x ,
N ′ � x := ev))

toLower(s, x , N) = N

toLower(s, x0

x1 x2

t1 t2

, N) =

let [l, u] = N(x0)

N ′ = if −∞ �= l ∧ u �= ∞∧ �l/28s/2� = �u/28s/2�
then N � x2 := x0 − (�l/28s/2�28s/2)

else ∃x2(N) �N {0 ≤ x2 < 28s/2}
in toLower(s/2, x1

t1
, toLower(s/2, x2

t2
,

N ′ � x1 := x0 >> 8s/2))

toUpper(s, x , N) = N

toUpper(s,

tu

x1

x0 , N) =
let N ′ = N � t := x1 >> 8s, t ∈ XT

N ′′ =if inURange(N ′, x0, s/2)
then N ′ � x1 := 28st + x0

else ∃x1(N
′) �N {28st ≤ x1 < 28s(t + 1)}

in toUpper(2s,
tu

x1 , N ′′)

toUpper(s,

tu

x1

x0 , N) =
let [l, u] = N(x1)

N ′ = if −∞ �= l ∧ u �= ∞∧ �l/28s� = �u/28s�
then N � x1 := 28sx0 + x1 − (�l/28s�28s)
else ∃x1(N) �N {28sx0 ≤ x1 < 28s(x0 + 1)}

in toUpper(2s,
tu

x1 , N ′)

Fig. 5.3. Write operations on access trees. The variable tu represents a wider tree
than the dotted borders suggest; tl, t1, and t2 represent two trees of half-width. Each
function is called with a pivot node, which is s bytes wide and drawn in bold.
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Thus, the tactic of updating variables that overlap is more precise than
merely projecting out overlapping fields and propagating information when
reading fields. Alas, the propagation functions in Fig. 5.2 are still needed
in case the access tree does not contain a variable for a specific field size.
For instance, consider accessing the structure ip_info as an array of 16-bit
integers. Specifically, let the variable i range over 0 . . . 2 and consider the read
access ((�����*) &ip_info)[i]. The result is the join of the pivot nodes x3,
t1, and t2 of the following three access trees:

x0

t1
x1

x0

t2
x2x3

Inferring a precise result for the array access requires the prop function to
refine the two variables t1, and t2 before the values of x3, t1 and t2 are joined.

The upcoming Sect. 5.3 formalises accesses to several trees such as the one
above. In addition, it details how to incorporate pointers into access trees.

5.2.1 Related Work

Little work has been done in the area of a detailed abstract model of the low-
level memory accesses in C programs. Venet and Brat were the first to propose
the automatic inference of fields that are relevant to an analysis [182]. In terms
of overlapping fields, Steensgaard was the first to propose a type system to
model overlapping accesses to memory [175]. His framework forms the basis of
a sound points-to analysis by joining points-to sets of the different members
of a structure as soon as a structure is accessed through a pointer with a
non-constant offset.

Miné has extended the Astrée analyser [60] to support overlapping fields
and presents a general framework in [131]. Similarly to our approach, the
concrete value of a byte in the program is defined by the intersection of in-
formation of the various fields that cover this byte. Rather than defining how
propagation between fields is implemented, only an example is given on how
interval information can be propagated. Miné proposes to add all fields that
a read or write may access, which is only possible since all memory regions in
the class of programs he considers are finite. Furthermore, write operations re-
move overlapping fields of different sizes, which makes it necessary to treat the
memory layout as an abstract domain that is modified together with the nu-
meric state. Whenever the join of two states is computed, the memory layout
is joined first and missing fields are inserted as necessary while a conservative
range is inserted into the numeric domain. Section 10.2.1 will detail how con-
servative ranges are inserted when using a global memory map. Finally, Miné
proposes an interesting extension that recovers the equality relationship be-
tween larger numeric variables and pointers when these are copied byte-wise.



100 5 Overlapping Memory Accesses and Pointers

5.3 Mixing Values and Pointers

Pointers in C are challenging to argue about because a pointer merely repre-
sents an address that can be used in arithmetic expressions just like integer
variables. Furthermore, an abstract address a ∈ A as it is used in our analysis
might correspond to an arbitrary set of addresses ρ(a) in the concrete pro-
gram. Thus, an abstract address can at best be represented symbolically, for
instance as a polyhedral variable xp with bounds [0, 232]. However, in order to
summarise different runs of a program, the analysis must be able to express
that a variable can take on the addresses of different objects in memory. Such
an approach is prohibitive in the context of the numeric domain Num due to
the loss of precision. Consider the join N = N1�N N2 of two numeric domains
in which a variable xa points to x1

p (that is, N1 �P {xa = x1
p}) and where

N2 �P {xa = x2
p}. In the join N , neither points-to relationship holds, which

makes it impossible to query the numeric domain as to which l-values the
variable xa may contain. This, in turn, is necessary to specify the semantics
of pointer operations, where the possible l-values determine which memory
regions a pointer may access. Hence, we chose to separately infer a set of pos-
sible l-values for each abstract variable in addition to the numeric information.
This raises the question of how the information from the points-to domain and
that of the numeric domain can be combined. For variables that correspond
to sequences of 32 bits (that is, those that can contain a pointer), the answer
is simply to map the abstract addresses from the variable’s points-to set to
concrete addresses and then add the value represented in the numeric domain
as an offset. The special tag null ∈ A, which can be part of any points-to set,
is taken literally to mean that a given variable contains the address zero. This
idea allows for a simple adaptation of the memρ function from Sect. 5.1.1 for
pointer variables. Specifically, the concrete store for each variable is composed
of its value and its points-to set:

memρ(v, A) =
⋂
m∈
M∪D

⎛
⎜⎝ ⋂

a∈
ρ(L(m))

⎛
⎜⎝ ⋂
〈o,s,xi〉∈

F (m)

{bitss
a+o(πi(v) + p) | p ∈ ρ(A(xi))}

⎞
⎟⎠
⎞
⎟⎠

In contrast to the previous definition of memρ, the function above takes
a points-to map A ∈ Pts in addition to the vector of values v ∈ [[N ]] and
adds, for each l-value a ∈ A(xi), the addresses ρ(a) to the numeric value
πi(v) of xi. In order to illustrate this process, consider a program variable
v with 〈0, 4, xv〉 ∈ F (v) and A(xv) = {null, a1

p, a
2
p}. Given ρ(a1

p) = {p1},
ρ(a2

p) = {p2}, and N(xv) = [0, 4]≡4, six concrete values of v are possible,
namely 0, 4, p1, p1 + 4, p2, and p2 + 4. Thus, the fact that ρ(null) = {0}
allows a pointer-sized variable x ∈ X to be treated as a normal integer as long
as A(x) = {null}. The view of l-values as offsets is in fact quite natural, as
C pointers that are NULL contain the address 0. For any field that is not of
pointer size, we require that its points-to set always be {null}. Hence, such
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a field can only represent values. An interesting situation arises when fields
of pointer size and other fields overlap. Suppose the points-to set of the field
above is reduced to A(xv) = {a1

p}. An overlapping field 〈0, 1, x′
v〉 ∈ F (v) with

N(x′
v) = [0, 0]≡64 creates stores where the first byte of v is zero, whereas the

pointer-sized field creates stores where the first byte corresponds to bin8(p1),
which may not be zero. Hence, the resulting set of stores could be empty.
Thus, overlapping fields have to be updated consistently with respect to the
points-to sets. In particular, a field of size s �= 4 that overlaps with a pointer
must take on all values v = [0, 28s], which ensures that bitss

a(v) = Σ; that is,
the field has no effect on the set of stores. Symmetrically, accessing a field that
overlaps with a pointer-sized field with l-values other than null corresponds
to accessing a part of a pointer. Special care has to be taken to express these
operations correctly.

To this end, we define two functions, readF,H and writeF,H , on the abstract
state 〈N,A〉 that correspond to the concrete memory access σs(a) and the
memory update σ[a s�→ v]. These abstract functions make use of the prop and
update functions in Figs. 5.2 and 5.3 for handling values in access tress. In
order to utilise access trees for l-values, Fig. 5.4 introduces several functions to
retrieve and store l-values and offsets of fields in an access tree. Specifically, the
l-values of a particular memory location are returned by getLVals, which seeks
the pointer-sized field in an access tree and returns its l-values. In contrast,
the function setLVals is only defined when called with a pointer-sized field,
in which case it merely updates its points-to set. In order to ensure that
fields that overlap with pointers are always set to their maximum bounds,
an offset stored in a pointer-sized field may not be propagated from and to
overlapping fields, which is guaranteed by the two functions setOfs and getOfs.
In particular, the setOfs function ensures that all overlapping fields are set to
their maximum bounds. The last function for manipulating l-values is clearF ,
which approximates a pointer with a value; that is, clearF sets the field to its
maximum and resets the points-to set to {null}.

Treating fields in access trees as values and pointers is key to defining the
semantics of the abstract memory accesses 〈N ′, x, a〉 = readF,H(m, eo, s,N,A)
and 〈N ′, A′〉 = writeF,H(m, eo, s, x, a, N, A) in Figs. 5.5 and 5.6, which read
and write the value of x ∈ X and the points-to set a ⊆ A within a memory
region m ∈ M ∪ D at offset eo ∈ Lin. Observe that the offset eo is not
necessarily constant and hence can express an access through a pointer that
might have a range of offsets. In this context, recall the notion of correct
memory management, which requires that every memory access σs(a) and
σ[a s�→ v] lie within the range of used memory locations. In the abstract setting,
we require that the access be within the bounds of the given memory region
m ∈M∪D. In the case m ∈M, correctness of the access is easily checked by
asserting that the offset is between zero and size(m) − 1. Otherwise, m ∈ D
holds and the access position has to be compared with the symbolic size of
the memory region. We define H : D → X × X to denote a map that takes



102 5 Overlapping Memory Accesses and Pointers

getLVals(s,

tu

x1

x0 , A) = getLVals(2s,
tu

x1 , A), s ≤ 2

getLVals(s,

tu

x1

x0 , A) = getLVals(2s,
tu

x1 , A), s ≤ 2

getLVals(4, x , A) = A(x)

getLVals(8, x0

x1 x2

, A) = A(x1) ∪ A(x2)

getLVals(s, εAT , A) = {null}

setLVals(4, a, x , A) = A[x 
→ a]

getOfs(4, x ) = x

getOfs(4, εAT ) = t t ∈ X T fresh

setOfs(4, y,
tu

x
tl

, N) = let t ∈ XT fresh in

update(4, t,
tu

x
tl

, N �N {0 ≤ t < 232}) � x := y

clearF (s,

tu

x1

x0 , N, A) = clearF (2s,
tu

x1 , N, A), s ≤ 2

clearF (s,

tu

x1

x0 , N, A) = clearF (2s,
tu

x1 , N, A), s ≤ 2

clearF (4, x , N, A) =

if A(x) = {null} then 〈N, A〉
else 〈∃x(N) �N {0 ≤ x < 232}, A[x 
→ {null}]〉

clearF (8, x0

t1 t2
, N, A) = let 〈N ′, A′〉 = clearF (4, t2 , N, A)

in clearF (4, t1 , N ′, A′)

clearF (s, εAT , N, A) = 〈N, A〉

Fig. 5.4. Setting and getting l-values and their offsets. The variable tu represents
a wider tree than the dotted borders suggest; tl represents two trees of half-width.
Each function is called with a pivot node, which is s bytes wide and drawn in bold.
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readF,H(m, eo, s, N, A) = if m ∈ M
then let N1 = N �N {eo ≡ s}

N2 = N1 �N {0 ≤ eo ≤ size(m) − s}
in readChkF (m, N2(eo), s, N2, A)
warn “Unaligned access to m” if N ��N N1

warn “Out-of-bounds access to m” if N1 ��N N2

else let 〈xm, xs〉 = H(m)
N1 = N �N {eo ≡ s}
N2 = N1 �N {0 ≤ eo ≤ xs − s}
N3 = N2 �N {xm ≥ 1}
〈N4, x, a〉 = readChkF (m, N3(eo), s, N3, A)

in if N3 �N {xm ≤ 1} then 〈N4, x, a〉
else 〈N4 � xt := N4(x), xt, a〉, xt ∈ X T fresh

warn “Unaligned access to memory allocated at m” if N ��N N1

warn “Out-of-bounds access to memory allocated at m” if N1 ��N N2

warn “Access to freed region allocated at m” if N2 ��N N3

readChkF (m, [l, u]≡d, s, N, A) = 〈N ′, x, a′〉
where {at1, . . . atn} =

⋃
o∈{l,l+d,...u} accessF (o, s, m)

a =
n⋃

i=1

getLVals(s, ati, A)

x ∈ XT fresh
〈N ′, a′〉 = if a = {null} then 〈

⊔n
i=1 Nn � x := xi, a〉 where

N0 = N
〈Ni, xi〉 = prop(s, ati, Ni−1) for i = 1, . . . n

else if s = 4 then 〈
⊔n

i=1 N � x := getOfs(ati), a〉
else 〈N �P {0 ≤ x < 28s}, {null}〉

Fig. 5.5. Reading abstract memory regions.

each heap region m ∈ D to two abstract variables 〈xm, xs〉 = H(m), where xm

denotes the number of dynamic memory regions that m summarises, whereas
xs represents the possible size of these regions. Given the symbolic size of
summarised memory regions on the heap, correct memory management is
checked on the access offsets in both readF,H and writeF,H . Specifically, both
functions are split into a wrapper that checks and restricts the access position,
and a part that infers and evaluates the access trees of the memory region.

For instance, the call readF,H(m, eo, s, N, A) as implemented in Fig. 5.5
first checks that reading s bytes at the offsets N(eo) constitutes a valid access
to the memory region m ∈ M by defining N1 and N2. Specifically, readF,H

enforces that a declared variable m ∈ M is at least accessed at multiples
of the size s, yielding N1, and then enforces that the locations accessed at
offset eo lie within [0, size(m) − 1], yielding N2. The warnings shown are
emitted as side effects of the function whenever the conditions shown hold.
The idea is that no undefined behaviour can occur in the concrete transfer
function if none of these warnings are triggered. The possible values of eo in
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N2 are passed to readChkF as a set of access positions [l, u]≡d, which then
returns a variable x ∈ X representing the extracted value and a points-to set
a ⊆ A. The second case of readF,H handles accesses to dynamically allocated
memory. The calculated states N1, N2, and N3 guarantee that the access
position is aligned, that it is within bounds, and that the abstract memory
region represents at least one region, respectively. Warnings are emitted if
these requirements are not met. As in the case of m ∈M, readChkF is called.
However, its result is only returned if xm is at most one; that is, if m represents
no more than one memory region. If m represents several memory regions, the
possible values of the result N4(x) are assigned to a new temporary xt, which is
then returned as the result. Note that N4(x) is an interval and that no linear
relationship exists between xt and x. This is important to ensure that the
summary memory region m faithfully approximates all summarised regions.
Suppose that x is returned, rather than xt, and that the result is used in a
test. Evaluating the condition involving x will restrict the field of all memory
regions that are summarised by m, which is incorrect, as each read access in
the program can only read one of the summarised memory regions. In order
to ensure correctness, it is sufficient to copy the value of x to xt without
creating a linear relationship between the two variables, an operation known
as “expand” [80].

The actual result of the memory access is calculated by creating access
trees for all possible access positions. Note that accessF returns an empty
tree εAT ∈ AT whenever a position in m is accessed that is not covered
by any field. Since {at1, . . . atn} is a set and hence contains no duplicates, n
is bounded by the number of fields F (m) rather than the number of access
positions {l, l +d, . . . u}. In particular, n is always finite since |F (m)| is finite.
Hence, an approximation to the read value can be calculated effectively by
calling prop to extract a result xi for every access tree ati as done in the case
a = {null}, thereby refining Ni−1 to Ni in every call of prop. These variables
are then assigned to a fresh temporary variable x in the refined domain Nn,
and the join of all of these assignments

⊔n
i=0 Nn � x := xi summarises the

result of all access trees in the variable x. Note that if a memory region m
contains no fields in the accessed range, then accessF (o, s,m) = {εAT } so
that 〈N1, x1〉 = prop(s, εAT , N0) sets the variable x1 to all possible values,
which are then assigned to x and returned. Thus, readChkF always returns
N ′ �= ⊥N , even if the accessed range covered no fields in F (m).

The condition a = {null} ensures that propagating values among over-
lapping fields is only performed when the accessed region contains no pointers.
If some of the accessed fields contain a points-to set other than {null}, then
the access size determines if a pointer offset is read (s = 4) or if a part of
a pointer is read (s �= 4). In the first case, getOfs is called for each access
tree to gather a summary of all offsets in x, which is then returned together
with the joined points-to sets of all accessed fields. In the case s �= 4, the
bytes that would be read in the concrete memory contain parts of the ad-
dresses ρ(a) ⊆ [0, 232 − 1], which cannot be represented as abstract addresses
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writeF,H(m, eo, s, ev, a, N, A) = if m ∈ M
then let N1 = N �N {eo ≡ s}

N2 = N1 �N {0 ≤ eo ≤ size(m) − s}
in writeChkF (m, N2(eo), s, ev, a, N2, A)
warn “Unaligned access to m” if N ��N N1

warn “Out-of-bounds access to m” if N1 ��N N2

else let 〈xm, xs〉 = H(m)
N1 = N �N {eo ≡ s}
N2 = N1 �N {0 ≤ eo ≤ xs − s}
N3 = N2 �N {xm ≥ 1}
〈N ′, A′〉 = writeChkF (m, N3(eo), s, ev, a, N3, A)

in if N3 �N {xm ≤ 1} then 〈N ′, A′〉 else 〈N3 �N N ′, A �A A′〉
warn “Unaligned access to memory allocated at m” if N ��N N1

warn “Out-of-bounds access to memory allocated at m” if N1 ��N N2

warn “Access to freed region allocated at m” if N2 ��N N3

writeChkF (m, [l, u]≡d, s, ev, a, N, A) = 〈
⊔n

i=1 Ni,
⊔n

i=1 Ai〉
where {at1, . . . atn} =

⋃
o∈{l,l+d,...u} accessF (o, s, m)

〈Ni, Ai〉 = writeTree(s, ev, a, ati, N, A) ∀i ∈ [1, n]

writeTree(s, ev, a, at, N, A) =
if s = 4 then 〈N ′, setLVals(s, a, at, A)〉 where

N ′ = if a = {null} then update(s, ev, at, N) else setOfs(s, ev, at, N ′)
else 〈update(s, ev, at, N ′), A′〉 where

〈N ′, A′〉 = clearF (s, at, N, A)

Fig. 5.6. Writing abstract memory regions.

a ⊆ A. As a consequence, an arbitrary value is returned as the result of the
read operation by restricting the temporary variable x with {0 ≤ x < 28s}.
An arbitrary value in the concrete program also includes any possible address
such that the points-to set can be refined to {null}.

Analogously to readF,H , a call to writeF,H(m,xo, s, x, a, N, A) as imple-
mented in Fig. 5.6 first checks that accessing s bytes of the memory region
m ∈M∪D at offset xo ∈ X is within bounds before writing the value x ∈ X
and the points-to set a ⊆ A. The checks shown are identical to the readF,H

case except when writing to a dynamically allocated memory region m ∈ D
with H(m) = 〈xm, xs〉, where xm may be greater than one. The latter indi-
cates that the abstract region m represents more than one concrete memory
region. Given that a write in the concrete program will only modify one of
the regions summarised by m ∈ D, the summarised region itself has to be
changed to the new value (to reflect the update to the memory region that
was written) and has to retain its previous values (to represent the regions
that remain unchanged). This is achieved by joining the new state 〈N ′, A′〉
with the original state 〈N,A〉 whenever xm > 1 is satisfiable in N .
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The update itself is performed by the functions writeChkF and writeTree.
The former creates the access trees corresponding to the accessed range and
calls writeTree on each of them. Similar to the updates of dynamically allo-
cated memory regions, the concrete memory access updates only one position
in the given range, and hence the results of calling writeTree are joined to
cater to any possible access position the concrete program can use. Updating
a single access tree as implemented by writeTree distinguishes between three
cases. The first two cases update a pointer-sized field. Depending on the set
of l-values a ⊆ A to be written, the value of the field is set either by update or
by setOfs. The former case is chosen if a pure value is written, in which case
all fields that overlap with the written positions are updated by update. In
contrast, if a points-to set other than {null} is written, overlapping fields are
set to their maximum range by setOfs, which ensures that only the written
pointer-sized field determines the value of the corresponding concrete mem-
ory. In both cases, the points-to set is updated by calling setLVals. The third
case handles non-pointer fields by merely calling update. Special care has to
be taken when writing to such a field, as it may overlap with a pointer-sized
field that has an l-value set different from {null}. Suppose a byte-sized value
0 is written over a pointer field xp ∈ X , where A(xp) = {ap}. In the concrete
program, a part of an address p ∈ ρ(ap) is overwritten. Calling the function
clearF ensures that the pointer-sized field is set to its maximum range, which
represents a conservative approximation to a partly overwritten pointer. Note
that clearF has no effect if an overlapping pointer-sized field is a pure value.

The basic abstract functions for reading and writing to memory are key to
a concise abstract semantics of Core C. Before Chap. 6 presents this semantics,
we detail the general relationship between concrete and abstract states.

5.4 Relating Concrete and Abstract Domains

The relationship between the concrete and the abstract domains forms the
basis of any correctness proof of an analysis. While we give no formal proof of
the analysis presented, the abstraction relation is still helpful in the construc-
tion and understanding of the abstract semantics. Furthermore, formulating
an abstraction map for a full-fledged imperative programming language is an
interesting exercise in itself, not least in that it requires certain design choices.

Before we elaborate on possible alternatives, we present the abstraction
relation of our analysis, which is based on the function γρ defined as follows:

γρ(N,A) = {memρ(v, A) | v ∈ [[N ]]}

The stores γρ(N,A) ⊆ Σ that correspond to an abstract state 〈N,A〉
depend on the address map ρ, which maps (sets of) abstract addresses to sets
of concrete addresses. As such, ρ determines the position of each function-local
variable and each heap-allocated variable, whose positions in the concrete
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program are determined by the memory allocation function freshδ
θ. In order

to prove correct memory management, the abstraction must be independent
of how freshδ

θ is implemented. Since it is difficult to define ρ for all possible
implementations of freshδ

θ, we choose to define a relational abstraction that
specifies when an abstract state 〈N,A〉 is an abstraction of a concrete state
〈σ, θ, δ〉. The idea is to extract concrete addresses from the stack θ and the
set of dynamically allocated memory regions δ to synthesise ρ, which is used
to define the set of possible concrete stores γρ(N,A). To this end, let δa

m =
{p | 〈l, p, s〉 ∈ δ∧ l = m} denote the addresses of all memory regions allocated
at location m in the program and let δs

m = {s | 〈l, p, s〉 ∈ δ ∧ l = m} denote
their sizes. Suppose that θ = 〈l0, A0〉 · · · 〈ls, As〉. Then define ρ as follows:

ρ(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{p} if ∃m ∈M, p ∈ [0, 232 − 1] . L(m) = a ∧ 〈m, p〉∈
⋃s

i=0 Ai

δa
m if ∃m ∈ D . L(m) = a ∧ |δa

m| ≥ 1
{pf} if a ∈ AF represents the address pf of the function f
{0} if a = null
[0, 232 − 1] otherwise

The first case matches if the abstract address a ∈ A is that of a declared
variable m ∈ M, which is contained in a stack frame as 〈m, p〉. Note that
this case only applies if the variable is present in exactly one stack frame. In
particular, a variable cannot appear in several stack frames, which thereby
prohibits the analysis of recursive functions. While the definition of ρ can
easily be adapted to cater to several invocations of the same function, the
latter would also require changes to writeF,H , which currently assumes that
the given memory region is always overwritten, which is incorrect if it exists
several times. In contrast, writeF,H performs weak updates to dynamically
allocated memory regions m when its abstract address L(m) corresponds to
several concrete addresses δa

m. Note that if |δa
m| = 0, then m corresponds

to no concrete memory region, which is handled by the last case. The third
case maps the abstract address af ∈ A of every function f to the address
pf of the function itself. With respect to the fourth case, as pointed out
earlier, the tag null represents the address 0. The last case applies if an
abstract memory region does not currently exist in the concrete program,
which can happen in two cases: firstly, when a local variable m ∈ M resides
in a function that is currently not on the call stack; and secondly, when a
dynamic memory region m ∈ D has not yet been allocated or is already freed.
Variables that contain pointers to these memory regions are assumed to take
on all possible addresses, which is why the set of all addresses [0, 232 − 1]
is returned. In this context, observe that a free memory region must exist
somewhere since otherwise ρ(m) = ∅ and concretising the variable containing
the address of m forces the result of memρ on p. 100 to be empty since
{bitss

a+o(πi(v) + p) | p ∈ ρ(m)} = ∅. Indeed, the last case in the definition of
ρ forces memρ to create all possible bit patterns at all possible addresses for
each non-existent variable, so that the concretisation of non-existent variables
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does not affect the concrete states. Note that the question of mapping non-
existent memory regions is purely technical and independent of the analysis,
which emits a warning whenever a pointer is dereferenced that corresponds
to an address of a freed memory region or to a local variable that has gone
out of scope.

Once an address relation ρ is derived from θ and δ, the relationship between
an abstract state 〈N,A〉 and the concrete state 〈σ, θ, δ〉 is surprisingly concise:

〈N,A〉 ∝ 〈σ, θ, δ〉 iffσ ∈ γρ(N,A)∧
∀m ∈ D . 〈xm, xs〉= H(m) ∧ δs

m⊆ N(xs) ∧ |δa
m| ∈ N(xm)

Thus, an abstract and a concrete state are in ∝ relation whenever the
concrete store σ is in the set of stores created by γρ. The second line enforces
additional requirements on each memory region m ∈ D, which may represent
several concrete memory regions in δ. Specifically, the number of memory
regions |δa

m| that are summarised by m must be a possible value of xm, and
the size of each of these memory regions s ∈ δs

m must be a possible value
of xs. Using the relation above, it is possible to show that executing a Core
C statement on the concrete state and on the abstract state results in two
modified states that are in ∝ relation if the original states were in ∝ relation.
Correctness of a fixpoint computation on the abstract semantics follows if
〈Σ,⊆〉 is a lower cone, [29] which is trivially true since 〈Σ,⊆〉 together with
∪ and ∩ is a complete lattice.

We conclude this chapter with a discussion of abstraction frameworks;
that is, of ways to formalise a static analysis. This discussion is relevant since
certain frameworks allow an assessment of the quality of the analysis results.
Yet the relational abstraction chosen in this book carries no such quality
guarantees, and the next section therefore justifies its use.

5.4.1 On Choosing an Abstraction Framework

The relational abstraction ∝ used above is rather weak in that it merely allows
a correctness proof but no reasoning about the quality of an abstraction. For
instance, a best abstraction is a function that maps every concrete state to
the most precise abstract state, which is a desirable property for abstract
domains. In order to discuss why this relational abstraction was chosen, let
S� and S� denote the sets of concrete and abstract states, respectively, and
let #� and #� impose an order on each set. A classic approach in data-flow
analysis is the use of a Galois connection; that is, a pair of adjoint functions
α : S� → S� and γ : S� → S� such that

∀s� ∈ S� . ∀s� ∈ S� . s� #� γ(s�) ⇐⇒ α(s�) #� s�

The property above requires both domains, S� and S�, to be complete
lattices [122]; that is, each (finite or infinite) subset of S ⊆ S� must have
a supremum

⋃
S and an infimum

⋂
S in S�. This requirement renders a
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Galois connection unsuitable to analyse a standard denotational semantics
that uses a flat cpo (complete partial order) to describe values at a particular
point in the program. A cpo is a partial order 〈S,#〉 in which every (infinite)
chain s1 # s2 # . . . , si ∈ S has a supremum

⋃
i∈N

si ∈ S; in a flat cpo,
the order # distinguishes only two classes of elements. A flat cpo for Core
C is S� = Σ ∪ ⊥ such that s1 #� s2 iff s1 = ⊥ ∨ (s1 ∈ Σ ∧ s2 ∈ Σ).
In general, given s1, s2 ∈ S� with s1 �= s2 and α(s1) = α(s2), the value
γ(α(s1)) may not exist in S�. One solution is to lift the concrete domain to
sets of objects; this was presented in Sect. 2.5 as the collecting semantics. In
order to avoid a more complex correctness proof with respect to the collecting
semantics (which itself is subject to correctness concerns), it is possible to
only use an abstraction map α : S� → S� and a complete abstract lattice
〈S�,#�〉. The latter requires that α map a concrete state to the most precise
abstract state [56], which implies that the abstract domain is a cpo. However,
some abstract domains, such as convex polyhedra, are not cpos since they
are devoid of some (infinite) elements, such that they cannot represent a best
abstraction for certain concrete objects [59,122]. In this case, a single function
γ : S� → P(S�) can be used, although it maps to a set of concrete states,
which, as argued above, comes at the cost of additional complexity. In order
to avoid arguing correctness with respect to a set of states, it is possible to
use a relational abstraction ∝⊆ S� × S�, which relates individual elements of
each domain [122], thereby allowing proofs on individual elements. In fact, we
require the relational framework since ∝ is defined in terms of γρ, which maps
to a set of concrete states, whereas ρ is synthesised from a single concrete
state.

Another interesting aspect of the analysis is the quality of the abstract
transfer functions. To this end, note that, in the context of a Galois connection,
soundness can be asserted by proving α ◦ f � #� f � ◦ α or, equivalently, f � ◦
γ #� γ ◦ f �, where (g ◦ f)(x) = g(f(x)) and #�, #� are lifted to functions.
Interestingly, if the transfer functions fulfill these relationships as equalities, a
statement about the quality of the transfer functions is possible. In particular,
if α◦f � = f �◦α, then f � is α-complete, meaning that it is as precise as possible
within the expressiveness of the abstract domain [56,57,79]. In the context of
the analysis presented, Sect. 4.7 already pointed out that no abstraction map
α exists, and hence the precision of the transfer functions can only be assessed
in special circumstances, such as by assuming that α maps a bit pattern to the
lowest positive values. On the contrary, if f �◦γ = γ◦f � holds, f � is γ-complete,
which is an orthogonal property to α-completeness [78]. This property always
holds unless the abstract states themselves are mere equivalence classes; that
is, if several abstract states map to the same concrete state [156]. In the
context of polyhedra, Sect. 3.3.1 presented the lattice of Z-polyhedra, which
are the smallest polyhedra in each equivalence class of rational polyhedra that
contain the same integral points. In this context, evaluating linear expressions
in the polyhedral domain is not γ-complete. Suppose the interval [0, 1.6], which
includes the integral values 0 and 1, is multiplied by 2, resulting in [0, 3.2],
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which implies that the largest integral value of the result may be 3 rather than
1× 2 = 2. Integral tightening may improve precision, but it is unclear if and
how γ-completeness can be achieved. Note that all completeness results rely
on an abstraction that is formulated as a Galois connection or at least one
in which the domains involved are complete partial orders [149]. Hence it is
not clear how the completeness properties presented map to our more general
setting, in which no unique α exists and in which the abstract domain does
not constitute a complete partial order.



6

Abstract Semantics

The functions wrap, readF,H , and writeF,H presented in the last chapter fa-
cilitate the definition of the abstract transfer functions; that is, the semantic
equations that specify how an abstract state is converted by executing Core C
programs. In contrast to the concrete semantics, the abstract semantics nat-
urally summarises several runs of a concrete program such that a lifting to
sets of states, as done in the form of the collecting semantics, is not nec-
essary to calculate a fixpoint. Thus, rather than calculating a set of states
for each program point, a fixpoint calculation on the abstract domains up-
dates single stores in a map ψ : Label∗ → Num × Pts, where Label∗ de-
notes sequences of labels that specify the current position in the program.
Specifically, a sequence 〈l0 · · · ls · l〉 is mapped to the pair of abstract domains
ψ(〈l0 · · · ls · l〉) = 〈N,A〉 that represents the program state at label l in a func-
tion that was invoked through calls residing at the labels l0, . . . ls. Here, ls
denotes the immediate caller of the function in which l resides. A fixpoint of
the program can be calculated by repeatedly evaluating the abstract transfer
function [[ lookupBlock(l) ]]�Blockψ(l0 · · · ls · l) for all l0 · · · ls · l in the pre-image
of ψ. The result of each call is a set of triples, where each triple 〈N,A, l0 · · · ls〉
denotes a new state 〈N,A〉 for the position l0 · · · ls in the program. These po-
sitions of ψ are then updated by joining the new state element-wise for each
domain N ∈ Num and A ∈ Pts with the previous state using the operators
�N and �A, respectively. This process is repeated until the abstract states
at all positions in ψ are stable, which is checked using the operators �N and
�A. Let ψinit denote the initial map where ψ(l1 · · · ls) = 〈⊥A,⊥N 〉 for all
l1 · · · ls ∈ Label∗ with ⊥A(x) = ∅ for all x ∈ X . Given a Core C program
V g s0; . . . sn; F , where V g denotes the set of global variables, si the sequence
of initialisation statements, and F the set of function declarations that include
a main function, the evaluation of

[[ main() ]]�Block([[ sn ]]�Stmt . . . ([[ s1 ]]�Stmt〈Ainit, Ninit, l〉) . . .)

returns a first state 〈A,N, l1 · · · ls〉, which is used to update ψ. Here, the map
Ainit is defined such that A(x) = {null} for all x ∈ X and, given the set
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of dynamically allocated memory regions D = {m1, . . . mn} with H(mi) =
〈xi

m, xi
s〉 for all i ∈ [1, n], let Ninit = {x1

m = 0, x1
s = 0, . . . xn

m = 0, xn
s = 0}.

Thus, all variables are set to contain only values initially, and all dynamically
allocated memory regions represent no concrete memory regions. Setting the
size of these memory regions avoids a loss of precision that otherwise occurs
in the convex hull calculation but has no effect otherwise since xi

s is not
evaluated if xi

m = 0. The label l ∈ Label that defines the call context of main
may not occur in the program. Whenever the return statement of the main
function is evaluated, the transfer function for control statements is called as
[[ lookupNext(l) ]]�Next, which we assume returns an empty set such that ψ is
not updated, thereby ignoring the exit state of the program.

During normal evaluation of the program, basic blocks and the control-
flow statements are evaluated by the abstract transfer functions presented in
Fig. 6.1. The first rule for a sequence of statements resembles that of the
concrete semantics: After evaluating the semantics of every statement in the
sequence, the control-flow statements of that block are looked up and eval-
uated. The notation of a nested function application turns out to be rather
unwieldy for more complex iterative calculations, which is why the abstract
semantics of a function call in the next rule features a different way of for-
mulating iteration. Here, the n arguments of the function f are assigned to
the formal parameters by defining an equation that is parameterised by i,
which is executed for all i in the given interval. The initial domains N0 and
A0 are set to the incoming domains N and A, whereas the resulting domains
Nn and An are used to evaluate the first basic block of the called function.
Note that the return value of [[ · ]]�Block is that of [[ · ]]�Next, which in turn re-
turns sets of triples as explained above. This feature is used in the third case,
where a function is called through a pointer variable. The four bytes of the
pointer v are read by the call to readF,H , and the resulting pointer offset x is
restricted to zero in order to check that the function pointers have no offset.
The extracted points-to set a is restricted to the set AF of function addresses,
resulting in the abstract addresses {af1 , . . . afk

}, where each afi
corresponds

to the function fi. The actual invocation of the functions is deferred by call-
ing [[ · ]]�Block for each function fi. The resulting triples of these invocations
are joined and returned. Note that the functions are invoked on the state
N ′′′ = ∃XT (N ′′). Here, the notation ∃X(N) abbreviates the sequence of pro-
jection operations ∃xn

(. . .∃x1(N) . . .), where {x1, . . . xn} = X. Specifically, all
temporary variables x ∈ X T are projected out in order to remove variables
that were introduced when populating access trees during the evaluation of
the call to readF,H . Note that readF,H may return temporary variables as a
result, and hence these variables may only be removed once they are no longer
needed to express relationships between non-temporary variables in fields.

The semantics of basic blocks is tightly coupled with the evaluation of
control-flow statements. For instance, the return statement complements the
semantics for function calls in that it evaluates the control-flow statements



6 Abstract Semantics 113

Basic Blocks.

[[ l : s1; . . . sn; ]]�Block〈N, A, l0 · · · ls〉 = [[ lookupNext(ls) ]]�Next〈N ′, A′, l0 · · · ls〉
where 〈N ′, A′〉 = [[ sn ]]�Stmt(. . . ([[ s1 ]]�Stmt〈N, A〉) . . .)

[[ l : fi(a1, . . . an); ]]�Block〈N, A, l0 · · · ls〉 = [[ lookupBlock(lt) ]]�Block〈N ′, A′, l0 · · · ls · l〉
where 〈 〈p1, . . . pn〉, 〈v1, . . . vk〉, lt〉 = lookupFunc(fi)

si = size(pi) for all i ∈ [1, n]
N0 = N , A0 = A

〈Ni, Ai〉 = [[ structure si pi.0 = ai; ]]�Stmt〈Ni−1, Ai−1〉 for all i ∈ [1, n]
N ′ = Nn, A′ = An

[[ l : ∗v(a1, . . . an); ]]�Block〈N, A, l0 · · · ls〉 =⋃k
i=1

(
[[ l : fi(a1, . . . an); ]]�Block〈N ′′′, A, l1 · · · ls〉

)
where 〈N ′, x, a〉 = readF,H(v, 0, 4, N, A)

N ′′ = N ′ �P {x = 0}
N ′′′ = ∃XT (N ′′)
{af1 , . . . afk

} = a ∩ AF

warn “Function pointer has an offset.” if N ′ ��N N ′′

warn “Call to a non-function pointer.” if a �⊆ {af1 , . . . afk}

Control Flow.

[[ return ]]�Next〈N, A, l0 · · · ls−1 · ls〉 = [[ lookupNext(ls) ]]�Next〈∃X(N), A, l0 · · · ls−1〉
where f : the currently executed function

M : variables and in stack frames l0, . . . ls−1

〈P, V, lt〉 = lookupFunc(f)
X = {x | 〈o, s, x〉 ∈ F (m) ∧ m ∈ P ∪ V }
warn “Returning address of local variable.”

if ∃a ∈ A.a ∈ {L(m) | m ∈ P ∪ V }∧
a ∈ {A(x) | 〈o, 4, x〉 ∈ F (m), m ∈ M}

[[ jump l ]]�Next〈N, A, l0 · · · ls〉 = {〈N, A, l0 · · · ls · l〉}

[[ if t s v.o op exp then jump l ; nxt ]]�Next〈N, A, l0 · · · ls〉 =

{〈∃XT (N then), Athen , l0 · · · ls · l〉} ∪ [[ nxt ]]�Next〈∃XT (Nelse), Aelse , l0 · · · ls〉
where 〈N ′, x, ax〉 = readF,H(v, o, s, N, A)

〈N ′′, e, ay〉 = [[ exp ]]�,s
Expr〈N ′, A〉

N ′′′ = N ′′ � y := e where y ∈ X T fresh

〈N then , Athen〉 = cond(N ′′′, A, t s, x, ax, y, ay, op)

〈Nelse , Aelse〉 = cond(N ′′′, A, t s, x, ax, y, ay,neg(op))

Fig. 6.1. Abstract transfer functions for basic blocks.
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lookupNext(ls), which are skipped during the invocation of a function at the
call site ls. Besides redirecting the control flow, the return statement removes
all information pertaining to local variables and function arguments, thereby
guaranteeing that out-of-scope variables are unrestricted, as required by the
abstraction relation (see Sect. 5.4). The next rule defines the jump statement,
which merely returns the current state 〈N,A〉 together with the target of the
jump appended to the current calling context l1 · · · ls. This simple case depicts
how the returned triple can be used to update the ψ map for the target of
the jump l1 · · · ls · l. More involved is the definition of the conditional, which
naturally creates one triple if the condition holds and other triples for the
remaining control-flow statements if the condition does not hold. The states
〈N then, Athen〉 and 〈Nelse, Aelse〉 are created by calling the helper function
cond on the results of the evaluation of the variable and expression that form
the arguments of the condition. As before, the function neg maps a relational
operator to its opposite;, e.g., neg(′≤′) = ′>′. A conditional statement is
the only operation that restricts the state space represented by the abstract
domains; its implementation crucially determines the precision of the analysis.
While many different cases are possible, we present the most important ones
in sequence. The most basic case occurs when two values are compared. If the
operation is not �=, the resulting variable x and the expression e are translated
directly to a meet operation on the numeric domain:

cond(N,A, t s, x, {null}, y, {null}, op) = 〈N ′′ �N {x op y}, A〉
where N ′ = wrap(N, t s, x)

N ′′ = wrap(N ′, t s, y)

Note that the pattern above only matches whenever the points-to sets
of both operands are {null}; that is, neither side contains a pointer. The
expression e ∈ Lin×Z may contain a linear expression over X and a constant.
The wrap function is applied to each argument to ensure that the relation
expressed on the variables in the polyhedron corresponds to the finite program
variables as described in Sect. 4.5. Note that the wrap function over N ∈ Num
can be derived straightforwardly from the implementation over P ∈ Poly on
p. 82. A special case is needed to implement the disequality operator �=:

cond(N,A, t s, x, {null}, y, {null}, �=) = 〈N ′′ �N {x < y} �N

N ′′ �N {x > y}, A〉
where N ′ = wrap(N, t s, x)

N ′′ = wrap(N ′, t s, y)

The operation above may in practice be unable to restrict the input poly-
hedron N if neither argument to the join �N is unsatisfiable. However, even
in this case, useful information can sometimes be inferred, as was shown in
Fig. 3.6 on p. 60, where the first state is intersected with x2 �= 5, thereby
restricting x1 from 1 ≤ x1 ≤ 5 to 2 ≤ x1 ≤ 4. Comparisons of pointers
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deviate only slightly from those of values. Consider operations other than �=
on points-to sets that contain a single l-value:

cond(N,A, t s, x, {a1}, y, {a2}, op) = 〈N ′′ �N {x op y}, A〉 iff a1 = a2 ∧
∀m ∈ D. L(m) �= a1

where N ′ = N �N {−212 ≤ x < 230}
N ′′ = N ′ �N {−212 ≤ y < 230}
warn “Pointer variable on lhs has excessive offset.” if N ��N N ′

warn “Pointer expression on rhs has excessive offset.” if N ′ ��N N ′′

Note that wrapping the operands of the test to a signed or unsigned integer
of 32 bits would be incorrect since the values represent offsets to the addresses
ρ(a1). However, wrapping cannot occur if the pointer offset is larger than
−212, as the lowest 4 KB are in reservedθ, and similarly offsets smaller than
230 cannot wrap since the upper 1 GB of memory is reserved for the operating
system. While the C standard insists that a pointer is invalid once its offset
exceeds the size of the underlying memory region, this assumption is quite
strong and we are not aware of any C implementation where for any pointer
p the expression p==v+p-v would not hold for any value v. In fact, a small
negative offset allows the implementation of Pascal-like arrays where indexing
starts at 1. On the contrary, restricting offsets to less than 1 GB will generate
false warnings whenever a program is capable of handling data structures
larger than 1 GB. In practice, the upper bound can be extended to offsets up
to 3 GB, although a correctness argument is more difficult, as the sum of the
pointer’s base address and the pointer offset may become larger than 4 GB
and hence could wrap.

As a consequence of limiting the value of pointer offsets, the function
above may emit warnings whenever the 3-GB limit is exceeded. Furthermore,
note that the comparison above is only valid when both points-to sets only
contain one l-value. For instance, if both operands contain the points-to set
{a1, a2}, it is possible that in the concrete program the addresses ρ(a1) will
be compared with the addresses ρ(a2) and vice versa. Even if the points-to
sets are singleton elements, a comparison cannot be made when the single
abstract address corresponds to several concrete addresses ρ(a1). This case
can only occur if a1 refers to a dynamically allocated memory region, which is
disallowed by requiring ∀m ∈ D . L(m) �= a1. The case above can be refined
if the operator is an equality test:

cond(N,A, t s, x, ax, y, ay, =) = 〈N ′′ �N {x = y}, A[x �→ (ax ∩ ay)]x∈X〉
where N ′ = N �N {−212 ≤ x < 230}

N ′′ = N ′ �N {−212 ≤ y < 230}
X = {y ∈ X | N ′′ �N {y = x}}
warn “Pointer variable on lhs has excessive offset.” if N ��N N ′

warn “Pointer expression on rhs has excessive offset.” if N ′ ��N N ′′
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Here, the offsets of the two operands are restricted as before. However,
if the equality test holds, the two operands must indeed be equal, which
implies that the offsets are equal and that both operands must contain the
same l-values, which therefore restricts the possible l-values to ax ∩ ay. The
points-to domain is updated to this set for all variables that are equal to x
(including x itself), thereby propagating information from the numeric domain
to the points-to domain. Note that the case above is particularly useful when
testing a pointer variable for NULL. While the test above is able to restrict the
domain considerably, the opposite test for �= is rather benign:

cond(N,A, t s, x, ax, y, {a}, �=) =
if N ′′ �N {x = y} then 〈N ′′, A[x �→ ax \ {a}]x∈X〉 else 〈N ′′, A〉
where N ′ = N �N {−212 ≤ x < 230}

N ′′ = N ′ �N {−212 ≤ y < 230}
X = {z ∈ X | N ′′ �N {z = x}}
warn “Pointer variable on lhs has excessive offset.” if N ��N N ′

warn “Pointer expression on rhs has excessive offset.” if N ′ ��N N ′′

This test is able to remove a single l-value contained in the right operand
from the variable x whenever the offset is equal. The test is rather specific
to the test if a given pointer is not equal to NULL; however, it is the most
important test on pointers in the analysis. Observe that the choice to treat a
pointer as an l-value set with an offset shows its limitations in the test above in
that a variable to which a non-zero offset is added cannot be tested for NULL.
This problem is further discussed in Chap. 13. The cases presented must be
tested in the order presented and the first matching case is to be evaluated.
If none of the cases match, the input state is returned verbatim, which is a
conservative approximation of any conditional in the program. Thus, define
cond(N,A, t s, x, ax, y, ae, op) = 〈N,A〉 as a catch-all case.

We now detail the semantics of expressions and simple assignments.

6.1 Expressions and Simple Assignments

Figure 6.2 presents the semantics of Core C expressions and simple assign-
ments. The function [[ e ]]�,sExpr, which evaluates an expression e where each
variable is s bytes wide, inductively evaluates each term in turn. The function
expects a points-to set as the third argument, which is added by the first
line if it is missing. This points-to set contains the l-values of the variables
encountered so far during the structural induction over the expression. The
base case of a constant is handled by the second case, which merely returns
the numeric domain N together with the value n as an offset to the passed-in
points-to set. The third case details how the sum of a term and a remaining
expression is evaluated. The idea is to evaluate the remaining expression and



6.1 Expressions and Simple Assignments 117

Expressions.

[[ exp ]]�,s
Expr〈N, A〉 = [[ e ]]�,s

Expr〈N, A, {null}〉

[[ n ]]�,s
Expr〈N, A, a〉 = 〈N, n, a〉

[[ n ∗ v.o + exp ]]�,s
Expr〈N, A, a〉 =

let 〈N ′, x, a′〉 = readF,H(v, o, s, N, A)
in if a′ = {null} then

let 〈N ′′, e, a′′〉 = [[ exp ]]�,s
Expr〈N ′, A, a〉 in 〈N ′′, nx + e, a′′〉

else if n = 1 ∧ a = {null} then

let 〈N ′′, e, a′′〉 = [[ exp ]]�,s
Expr〈N ′, A, a′〉 in 〈N ′′, x + e, a′′〉

else if n = −1 ∧ (a \ {null}) = (a′ \ {null}) then

let 〈N ′′, e, a′′〉 = [[ exp ]]�,s
Expr〈N ′, A, {null}〉 in 〈N ′′,−x + e, a′′〉

warn “Subtracting pointers to different objects.” if |a| > 1
warn “Positive pointer can be NULL.” if null ∈ a
warn “Negative pointer can be NULL.” if null ∈ a′

else let t ∈ X T fresh in 〈N �N {0 ≤ t < 28s}, t, {null}〉

Assignments.

[[ s v.o = exp ]]�Stmt〈N, A〉 = 〈∃XT (N ′′), A′〉
where 〈N ′, e, a〉 = [[ exp ]]�,s

Expr〈N, A〉
〈N ′′, A′〉 = writeF,H(v, o, s, e, a, N ′, A)

[[ s v → o = exp ]]�Stmt〈N, A〉 = 〈∃XT (N ′′′), A′〉
where 〈N ′, e, a〉 = [[ exp ]]�,s

Expr〈N, A〉
〈N ′′, xo, a

′〉 = readF,H(v, 0, 4, N ′, A)
{m1, . . . mn} = {m ∈ M∪D | L(m) ∈ a′}
〈Ni, Ai〉 = writeF,H(mi, xo + o, s, e, a, N ′′, A〉 for all i ∈ [1, n]
N ′′′ =

⊔n
i=1 Ni, A

′ =
⊔n

i=1 Ai

warn “Dereferencing a NULL pointer.” if null ∈ a′

warn “Dereferencing a function pointer.” if a′ ∩ AF �= ∅

[[ s v1.o1 = v2 → o2 ]]�Stmt〈N, A〉 = 〈∃XT (N ′′′), A〉
where t ∈ XT fresh

〈N ′, xo, a〉 = readF,H(v2, 0, 4, N, A)
{m1, . . . mn} = {m ∈ M∪D | L(m) ∈ a}
〈Ni, xi, ai〉 = readF,H(mi, xo + o2, s, N

′, A) for all i ∈ [1, n]
N ′′ =

⊔n
i=1 Ni � t := xi

〈N ′′′, A′〉 = writeF,H(v1, o1, s, t, (a1 ∪ . . . ∪ an), N ′′, A)
warn “Dereferencing a NULL pointer.” if null ∈ a
warn “Dereferencing a function pointer.” if a ∩ AF �= ∅

Fig. 6.2. Abstract semantics for expressions and assignments.
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to add the result to the outcome of this calculation. In the simplest case,
the term n ∗ v .o contains a value such that the result is merely that of the
remaining expression to which the term is added. Slightly more interesting
are the occurrences of variables that contain l-values. In the case with n = 1
and a passed-in points-to set a = {null}, the new points-to set a′ is passed
to the recursive call [[ exp ]]�,sExpr and the offset of the pointer variable is added
on return. This new points-to set is passed down until the base case is reached
or until a coefficient of −1 is encountered in front of a variable that has the
same points-to set. In this case, the difference of the two pointers is calculated
and the difference between them is returned as the value; that is, with the
points-to set {null}. The final case conservatively approximates the result
when a pointer is scaled by a constant unequal to 1 and −1 or the points-to
sets of positive and negative terms do not coincide. Note that expressions such
as −p+q, where both p and q have the same points-to set, are not recognised,
although q−p is identified as the pointer difference. This limitation simplifies
the presentation of [[ · ]]�,sExpr and is not present in the actual implementation.

The remaining three transfer functions in Fig. 6.2 are assignments of base
types between variables and through pointers. The first case assigns the value
e of the expression and the points-to set a to the memory region v at offset o.
The second case assigns an expression to the memory regions pointed to by v
at the offset o. In order to infer the possible set of memory regions, the four
bytes of the pointer v are read into xo ∈ X and a′ ⊆ A. The points-to set
is mapped to memory regions {m1, . . . mn}, to which the result is written at
offset xo + o; that is, at the sum of the pointer offset xo and the constant
displacement o stemming from the statement itself. Since the concrete pro-
gram only writes to one of these memory regions, the resulting n domain pairs
〈N1, A1〉, . . . 〈Nn, An〉 are joined and returned. The case of reading through
a pointer is built up analogously. In order to approximate a value that con-
tains the values from all pointed-to memory regions, the result of each read
is assigned to the temporary t. After joining all domains that contain the re-
sulting value in t, an approximation of the values from all accessed memory
regions is available in t, which is then written to the variable v1. The join of
the points-to set is calculated by simple set union a1 ∪ . . . ∪ an. Note that
using access trees guarantees a precise result even if the pointer offset xo + o
is a range. Less precision is attainable when assigning whole structures.

6.2 Assigning Structures

The abstract transfer functions that assign whole structures cannot make use
of access trees since only the total size of a structure is known rather than the
size and offsets of individual fields. Since assigning whole structures at a range
of offsets is rather difficult, the transfer functions for assigning whole struc-
tures in Fig. 6.4 only distinguish between two cases: Either the two structures
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Create bounds on access to memory region.
checkH(m, eo, s) = if m ∈ M then {0 ≤ eo ≤ size(m) − s}

else let 〈xm, xs〉 = H(m) in {0 ≤ eo ≤ xs − s, xm ≥ 0}

Removing all information pertaining to a memory region.
clearMem(m, eo, s, N, A) = 〈Nn, An〉

where N ′ = N �N checkH(m, eo, s)
[l, u]≡d = N ′(eo)
{〈x1, s1〉, . . . 〈xn, sn〉} = {〈x, s′〉 | ∀〈o′, s′, x〉 ∈ F (m) .

[l, u + s] ∩ [o′, o′ + s′] �= ∅}
N0 = N ′, Ni = ∃xi(Ni−1) �N {0 ≤ xi < 28si} for all i ∈ [1, n]
A0 = A, Ai = Ai−1[xi 
→ {null}] for all i ∈ [1, n]
warn “Illegal write access to structure.” if N ��N N ′

Copying whole memory regions.
copyMem(m1, o1, m2, o2, s, N, A) = 〈Nm, Am〉

where Fi = {〈o − oi, s, x〉 | 〈o, s, x〉 ∈ F (mi) ∧ [o, s] ∩ [oi, si] �= ∅} for i = 1, 2

{〈xl
1, x

r
1〉, . . . 〈xl

n, xr
n〉} = {〈xl, xr〉| ∀〈o, s, xl〉 ∈ F1 .

∃xr ∈ X . 〈o, s, xr〉 ∈ F2}
{〈sn+1, xn+1〉, . . . 〈sm, xm〉} = {〈s, xl〉 | ∀〈o, s, xl〉 ∈ F1 .

∀xr ∈ X . 〈o, s, xr〉 /∈ F2}
N0 = N �N checkH(m1, o1, s) �N checkH(m2, o2, s), A0 = A

Ni = Ni−1 � xl
i := xr

i for all i ∈ [1, n]

Ai = Ai−1[x
l
i 
→ A(xr

i )] for all i ∈ [1, n]
Ni = ∃xi(Ni−1) �N {0 ≤ xi < 28si} for all i ∈ [n + 1, m]
Ai = Ai−1[xi 
→ {null}] for all i ∈ [n + 1, m]
warn “Illegal access to structure.” if N ��N N0

Fig. 6.3. Helper functions to copy and clear memory regions.

in the assignment are located at constant offsets, in which case the individual
fields of the access trees can simply be copied, or an assignment through a
pointer has a range of offsets, in which case all affected fields in the target
memory region are set to their maximum bounds. To this end, Fig. 6.3 defines
three helper functions. The first one restricts an access position to the range of
the given memory region. This function is used in clearMem(m, eo, s,N,A),
which clears all fields in m ∈ M ∪ D in the range [eo, eo + s − 1], where
eo ∈ Lin×Z may itself be a range of offsets. On the contrary, the third helper
function, copyMem(m1, o1,m2, o2, s, N, A), copies s bytes starting at the con-
stant offsets o1 in m1 to the fields starting at the constant offset o2 of memory
region m2. Both functions extract fields that overlap with the accessed range.
While clearMem resets all fields to their maximal value and the points-to sets
to {null}, the copyMem function distinguishes between fields in the source
memory region that match fields in the destination region and the remaining
fields in the destination. Specifically, for both regions m1 and m2, copyMem
extracts those fields of mi that overlap with the accessed region, relocates
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Assignment of Structures.

[[ structure s v1.o1 = v2.o2 ]]�Stmt〈N, A〉 = copyMem(v1, o1, v2, o2, s, N, A)

[[ structure s v1 → o1 = v2.o2 ]]�Stmt〈N, A〉 = 〈∃XT (
⊔n

i=1 Ni),
⊔n

i=1 Ai〉
where 〈N ′, xo, a〉 = readF,H(v1, 0, 4, N, A)

{m1, . . . mn} = {m ∈ M∪D | L(m) ∈ a}
[l, u]≡d = N ′(xo)
if l = u
then 〈Ni, Ai〉 = copyMem(mi, l + o1, v2, o2, s, N

′, A) for all i ∈ [1, n]
else 〈Ni, Ai〉 = clearMem(mi, xo + o1, s, N

′, A) for all i ∈ [1, n]
warn “Dereferencing NULL pointer.” if null ∈ a
warn “Dereferencing function pointer.” if a ∩ AF �= ∅

[[ structure s v1.o1 = v2 → o2 ]]�Stmt〈N, A〉 = 〈∃XT (N ′′′), A′〉
where 〈N ′, xo, a〉 = readF,H(v2, 0, 4, N, A)

{m1, . . . mn} = {m ∈ M∪D | L(m) ∈ a}
N ′′ = N ′ �N

(⋃n
i=1 checkH(mi, xo + o2, s)

)
[l, u]≡d = N ′′(xo)
if u = l
then 〈Ni, Ai〉 = copyMem(v1, o1, mi, l + o2, s, N

′′, A) for all i ∈ [1, n]
〈N ′′′, A′〉 = 〈

⊔n
i=1 Ni,

⊔n
i=1 Ai〉

else 〈N ′′′, A′〉 = clearMem(v1, o1, s, N
′′, A)

warn “Dereferencing NULL pointer.” if null ∈ a
warn “Dereferencing function pointer.” if a ∩ AF �= ∅
warn “Illegal write access to structure.” if N ′ ��N N ′′

Fig. 6.4. Abstract transfer functions for assignments of structures.

them by removing the offset oi, and finally stores them in Fi. All fields that
have the same offset and size are then assigned in N by calculating N1, . . . Nn

and A1, . . . An, whereas all fields in F1 that have no matching source field are
set to their maximum bounds by calculating Nn+1, . . . Nm and An+1, . . . Am.

These helper functions are then used to define assignments of structures
in Fig. 6.4, which in its simplest case merely calls copyMem. If a structure is
written through a pointer, the possible target memory regions are extracted.
Depending on whether the offset of the pointer is constant or not, each mem-
ory region is either copied to or overwritten. The resulting pairs of domains
〈Ni, Ai〉 are joined and returned as the result. Note that checking that all
memory accesses are within bounds is done within the helper functions. Read-
ing a structure through a pointer that has a range of offsets will merely clear
all fields in the target structure without ever reading any fields from the
source variable. Hence, checkH is used to constrain the read offset such that
the access to each source region is within bounds.
The next section details abstract transfer functions for casts, address-of oper-
ators, and memory allocation, and thereby completes the abstract semantics.
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6.3 Casting, &-Operations, and Dynamic Memory

Figure 6.5 presents the abstract transfer functions for the remaining Core C
statements. An interesting case is the cast between two integer types. Not
surprisingly, the result of the assignment is the maximum range of the target
type if the source can contain a pointer. Otherwise, two cases can occur.
Firstly, the type on the left may be smaller than the type on the right. As
pointed out in Chap. 4, no special conversion has to be done, as wrapping
will be made explicit when needed – for instance, when comparing the target
variables. In contrast, wrap needs to be called if the target type is larger than
the source type since otherwise a value might be assigned to the target that is
larger than that of the maximum range of the source type, which is impossible
in the concrete program.

The cases for the address-of operators need little explanation, nor does the
assignment of a string constant that merely clears the memory, as the analysis
does not track individual elements of an array for efficiency reasons.

The last two statements concern the allocation and deallocation of dy-
namic memory. The malloc function increments the number of concrete mem-
ory regions xm that the abstract memory region l summarises. Analogously,
the free function decrements this counter by 1 by calling freeMemH on every
memory region that the passed-in pointer may point to. Note that the main
purpose of xm is to distinguish if l ∈ D corresponds to some concrete heap
regions (xm > 0) or if l represents a freed memory region (xm = 0). Each
time a memory region l is freed, the counter is not only decremented but also
explicitly set to zero in order to indicate that l might from now on refer to
a freed region. A subtle consequence is that xm merely tracks the maximum
number of memory regions that the abstract address l summarises rather than
tagging each allocated memory region with a number. This is important in
that the free function in the concrete program can free any of the regions that
are summarised by l. Thus, if two memory regions of sizes s1 and s2 are both
summarised by the same abstract memory region l ∈ D, freeing one of them
will leave one memory region of size s1 or s2. Since it is not known which
memory region is freed, it is important that no linear relationship between
xm and xs exist, as this would inevitably restrict the value of xs whenever
free decrements xm. The implementation of malloc guarantees that no linear
relationship exists between xs and xm whenever xm > 0 by first incrementing
xm by calculating N ′′ = N ′ � xm := xm + 1 and afterwards setting the new
size xs for all xm > 0.

Given the abstract semantics of Core C, the last section of this chapter
will detail some refinements necessary to create a fully automated analysis.
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Type Casts.

[[ s1 v1.o1 = t s2 v2.o2 ]]�Stmt〈N, A〉 = 〈∃XT (N ′′′), A′〉
where 〈N ′, x, a〉 = readF,H(v2, o2, s2, N, A)

xt ∈ X T fresh

〈N ′′, x′〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈N ′ �N {0 ≤ xt < 28s1}, xt〉 if a �= {null} ∧ t = uint
〈N ′ �N {−28s1−1 ≤ xt < 28s1−1}, xt〉

if a �= {null} ∧ t = int
〈N ′, x〉 if s1 ≤ s2

〈wrap(N ′, t s2, x), x〉 otherwise
〈N ′′′, A′〉 = writeF,H(v1, o1, s1, x

′, {null}, N ′′, A)

Address-Of Operators.

[[ v1.o1 = &v2.o2 ]]�Stmt〈N, A〉 = writeF,H(v1, o1, 4, o2, {L(v2)}, N, A)

[[ v1.o1 = &f ]]�Stmt〈N, A〉 = writeF,H(v1, o1, 4, 0, {af}, N ′, A)
where af ∈ AF corresponds to address pf of function f

String Constants.

[[ v = "c0c1 . . . ck−1" ]]�Stmt〈N, A〉 = clearMem(v, 0, k, N, A)

Dynamic Memory Allocation

[[ l : v1 =malloc(v2) ]]�Stmt〈N, A〉 = 〈∃XT (N ′′′′), A′′〉
where 〈N ′, xv, a〉 = readF,H(v2, 0, 4, N, A)

N ′′ = wrap(N ′,uint32, xv)
〈xm, xs〉 = H(l)
N ′′ = N ′ � xm := xm + 1
N ′′′ = N ′′ �N (N ′′ �N {xm > 0} � xs := xv)
〈N ′′′′, A′′〉 = writeF,H(v1, 0, 4, 0, {l,null}, N ′′′, A′)
warn “Parameter contains pointer.” if a �= {null}

[[ free(v) ]]�Stmt〈N, A〉 = 〈∃XT N ′′′, A〉
where 〈N ′, xv, a〉 = readF,H(v, 0, 4, N, A)

N ′′ = N ′ �N {xv = 0}
{m1, . . . mn} = {m ∈ M∪D | L(m) ∈ a}
N ′′′ =

⊔n
i=1 freeMemH(mi, N

′′)
warn “Freed pointer has an offset.” if N ′ ��N N ′′

warn “Freeing function pointer.” if a ∩ AF �= ∅

freeMemH(m, N) = (N ′ � xm := xm − 1) �N (N ′ � xm := 0 � xs := 0)

where 〈xm, xs〉 = H(m)
N ′ = N �N {xm > 0}
warn “Repeatedly freeing region allocated at m” if N ��N N ′

Fig. 6.5. Abstract transfer functions for type casts, address-of operators, string
constants, and dynamic memory allocation.
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6.4 Inferring Fields Automatically

The analysis presented so far has a major drawback: It is not fully automatic
since the fields in the map F on which information is inferred have to be
set manually. Populating all fields with domain variables is not feasible for
performance reasons, as every 8 bytes can have 15 overlapping fields, which is
unacceptable even for programs with a small memory footprint. Furthermore,
fully populating access trees is wasteful since arrays of sufficient size are always
accessed within loops such that accesses will occur through a pointer with a
range of offsets. However, write accesses to a range of array elements cannot
induce any information on individual elements, as a write to several elements
has to retain the previous value of each element. Hence, populating memory
regions that are accessed through a pointer that has a range of offsets is of
no benefit and a waste of resources. This observation leads to a heuristic for
populating F automatically with fields that are of interest to the analysis.
The idea is to add a field 〈o, s, x〉 to F (m) each time s bytes are written to
the memory region m at the constant offset o. The number of fields added to
F in this way is bounded by the number of write operations in the program
since a repeated analysis of a write operation will feature either the same
constant offset, in which case the field in F is reused, or a range of offsets, in
which case no new field is added. In particular, a single write operation can
never be evaluated with two different constant offsets since the state space
grows monotonically; that is, the state during the second evaluation has to
include the offset of the first evaluation. Adding new fields should also be
avoided when writing through a pointer that contains several l-values, as no
target can be updated without retaining the previous value. By following these
principles, the analysis only adds fields that can be set to a precise value and
can thus become relevant for verifying the program at hand.

While this heuristic yields a field map F that only contains fields that
can contribute to a more precise analysis result, it turns out that adding
fields on-the-fly is not without drawbacks, as illustrated by the following code
fragment:

�� (rand ()) { (���) ip_info =0; } ���� {
ip_info.addr [0]=0; ip_info.addr [1]=0;
ip_info.addr [2]=0; ip_info.addr [3]=0; }

The fragment above sets the fields of the ip_info structure in Fig. 5.1 to
zero either by writing the 4-byte field x0 or by writing four byte-sized fields
that overlap with x0. Assuming that the then-branch of the conditional is
analysed first, x0 will be present when analysing the else-branch, so that it
is updated correctly when writing the individual bytes. However, when join-
ing the two branches, the information on the byte-sized fields is lost since
these four fields are unbounded in the then-branch. Irritatingly, the lost infor-
mation cannot easily be recovered: Reading a single byte in the joined state
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can only propagate information through the generated access tree if the byte-
sized fields are in the range [0, 255]. However, since these fields are completely
unbounded in the then-branch, their value is unbounded in the join and prop-
agation is disabled since the values are not in [0, 255]. Chapter 10 will detail
a workaround that mostly avoids a precision loss in this situation.

An orthogonal aspect is to make the analysis more versatile by adapting
it to different platforms. The abstract semantics and the examples are based
on little-endian, 32-bit machines that can operate on integers with at most 64
bits. Thus, the widest fields in F can be 8 bytes, thereby limiting the height
of any given access tree. Furthermore, all pointer-sized accesses are encoded
as 4-byte accesses. While changes to these parameters are obvious, the change
to a big-endian machine is straightforward but somewhat more intriguing.
Changing the endianness assumption of the underlying machine entails that
writing a single byte at the address of a 4-byte integer will overwrite not
the lower bits but rather the upper bits. In fact, analysing a program for a
big-endian machine merely requires that the children in each access tree be
swapped recursively before calling prop and update.

Finally, we point out that on rare occasions the alignment assumption of
our model might not fit the actual alignment of program variables. Consider
the following two declarations of function-local variables:

��� i;
������ {

��� j;
�	�
�� k;

} l;

Assuming that the integer i is located at offset o with o mod 8 = 0, an
optimising compiler may place the elements of the structure at o+4 for j and
o + 8 for k. In this case, the beginning of the memory region represented by l
is not aligned at an 8-byte boundary, which is the assumption when overlaying
complete binary trees over a memory region starting from offset 0. The effect
is that accessing k will trigger a false warning about incorrect alignment.
A workaround in the form of access trees that are offset by 4 bytes is certainly
possible but was not found necessary for the C programs of interest.
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Ensuring Efficiency
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Planar Polyhedra

The analysis presented in the previous chapters relies on an efficient im-
plementation of the underlying polyhedral operations in order to attain
acceptable performance. However, common implementations of convex poly-
hedra [14, 27, 93, 119] suffer from inherent scalability problems that mainly
relate to the calculation of the join operation, which corresponds to the con-
vex hull in the context of polyhedra. The classic approach for calculating the
convex hull of two polyhedra is to convert the half-space representation using
inequalities into the generator representation consisting of vertices, rays, and
lines. Vertices are points in the polyhedron that cannot be represented by a
convex combination of other points. Rays and lines are vectors that repre-
sent unidirectional and bidirectional trajectories, respectively, towards which
the polyhedron extends to infinity. The convex hull of two input polyhedra
can be calculated by converting both polyhedra into their generator repre-
sentations, joining their sets of vertices, rays, and lines, and converting these
three sets back into the half-space representation. In order to illustrate the
problems using this approach, consider Fig. 7.1. Here, the shown polyhedra
P1 = [[{1 ≤ x1 ≤ 7, 2 ≤ x2 ≤ 8}]] and P2 = [[{1 ≤ x1 ≤ 7, 10 ≤ x2 ≤ 16}]]

1
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x1

x215

P P
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x215

P121 2

7 7

Fig. 7.1. Calculating the convex hull P12 = P1 �P P2 of planar polyhedra using the
generator representation.
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Fig. 7.2. Calculating the convex hull P ′
12 = P ′

1�P P ′
2 of three dimensional polyhedra

using the generator representation.

contain neither rays nor lines, as they are both bounded. The sets of vertices
are shown as crosses. These vertices are included in the resulting convex hull
P12 = P1 �P P2, which is shown in the right graph of the figure. A similar ex-
ample in three dimensions is shown in Fig. 7.2, which depicts the convex hull
P ′

12 = P ′
1 �P P ′

2 of the polyhedra P ′
1 = [[{1 ≤ x1 ≤ 7, 2 ≤ x2 ≤ 8, 0 ≤ x3 ≤ 3}]]

and P ′
2 = [[{1 ≤ x1 ≤ 7, 10 ≤ x2 ≤ 16, 0 ≤ x3 ≤ 3}]]. While in

the two-dimensional case each input polyhedron can be described by four
inequalities or, equivalently, four vertices, each input in the three-dimensional
case is described by six inequalities or, equivalently, eight vertices. In gen-
eral, calculating the convex hull of two d-dimensional hypercubes requires 2d
inequalities to represent each input polyhedron or, equivalently, 2d vertices.
Thus, even though input and output polyhedra can be described by a small
number of inequalities, the intermediate representation using generators can
be exponential. While circumventing this exponential blowup is possible by
approximating the convex hull operation [169], the most compelling example
of large-scale program analysis that uses a relational domain [30] is based on
a sub-class of polyhedra, namely the Octagon domain [128]. The Octagon do-
main only allows inequalities with at most two variables per inequality, where
the coefficients of these variables have to be one or minus one. These inequal-
ities are too weak to express relationships between overlapping fields, and
many other important program properties where coefficients larger than one
are needed to express a relationship between variables. This chapter presents
operations on planar (that is, two-dimensional) polyhedra that are later lifted
to sets of inequalities that contain at most two variables but with arbitrary
coefficients, thereby extending the Octagon abstract domain. We show that
all domain operations on planar polyhedra can be implemented efficiently,
thereby providing a basis for an efficient lifting to arbitrary dimensions. The
key observation for implementing efficient algorithms is that inequalities in
two dimensions can be sorted by angle. The chapter therefore commences by
presenting basic properties of inequalities in planar space. The notation in-
troduced here is then used to define the various domain operations on planar
polyhedra.
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x 0

Fig. 7.3. The angle of a planar inequality is measured relative to x ≤ 0.

7.1 Operations on Inequalities

For the sake of this chapter, let X = {x, y} denote the set of polyhedral
variables that correspond to the axes of the two-dimensional Euclidian space.
Observe that the vector 〈a, b〉 is orthogonal to the line ax + by = c and
points away from the induced half-space [[ax+by ≤ c]]. This vector induces an
ordering on half-spaces via the orientation mapping θ. This map θ : Ineq →
[0, 2π) is defined such that θ(ax + by ≤ c) = ψ, where cos(ψ) = a/

√
a2 + b2

and sin(ψ) = b/
√

a2 + b2. The mapping θ corresponds to the counterclockwise
angle through which the half-space of x ≤ 0 has to be turned to coincide with
that of ax + by ≤ c, as illustrated in Fig. 7.3. In the context of this work, θ
is mainly used to compare the orientations of two half-spaces, which is key to
sorting a set of inequalities. For the sake of efficiency and numeric stability, it
is desirable to implement this comparator without a recourse to trigonometric
functions [158]. To this end, define the function class : Ineq → {1, 2, . . . , 8} as
follows:

class(ax + by ≤ c) =

⎧⎪⎪⎨
⎪⎪⎩

7− sign(b) : a < 0
1 : a = 0 ∧ b ≤ 0
5 : a = 0 ∧ b > 0

3 + sign(b) : a > 0

Here sign : Z → {−1, 0, 1} is the function that returns −1 if the given number
is negative, 1 if it is positive, and zero otherwise. A comparison between the
angles of ι1 ≡ a1x+b1x ≤ c1 and ι2 ≡ a2x+b2x ≤ c2 can now be implemented
as follows:

θ(ι1) ≤ θ(ι2) ⇐⇒ class(ι1) ≤ class(ι2) ∨
class(ι1) = class(ι2) ∧ a1b2 ≤ a2b1

Furthermore, define the angular difference ι1�ι2 between two inequalities ι1
and ι2 as the counterclockwise angle between θ(ι1) and θ(ι2). More precisely,
ι1�ι2 = (θ(ι2)−θ(ι1)) mod 2π. This function is used to test if two inequalities
are less than π apart. As above, this test can be implemented without recourse
to trigonometric functions.
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7.1.1 Entailment between Single Inequalities

A recurring function is the test if two inequalities define a sub-space of an-
other inequality. In fact, this test is a building block of the upcoming domain
operation that applies this test to compare consecutive elements of a sorted
sequence of inequalities and thereby infer information on an inequality with
respect to the whole sequence.

We give a definition of the test in the form of a case distinction on the
coefficients of the inequalities involved. Let ιi ≡ aix+ biy ≤ ci for i = 1, 2 and
ι ≡ ax + by ≤ c. Assume ι1�ι2 ≤ π; otherwise exchange ι1 and ι2. We define
the following predicates, which are explained below:

{ι1} � ι ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

false if a1b− ab1 �= 0
false else if a1a < 0
false else if b1b < 0
a
a1

c1 ≤ c else if a1 �= 0
b
b1

c1 ≤ c else if b1 �= 0
(c < 0 ∧ a = 0 ∧ b = 0) ⇒ c1 < 0 otherwise

{ι1, ι2} � ι ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
{ι1} � e ∨ {ι2} � ι if d = a1b2 − a2b1 = 0
false else if λ1 = (ab2 − a2b)/d < 0
false else if λ2 = (a1b− ab1)/d < 0
λ1c1 + λ2c2 ≤ c otherwise

Intuitively, the predicate {ι1} � ι holds iff [[ι1]] ⊆ [[ι]] and, analogously,
{ι1, ι2} � ι holds iff [[{ι1, ι2}]] ⊆ [[ι]]. The reasoning behind the definitions
above is as follows.

Inclusion between two single inequalities never holds if they are not par-
allel – that is, if the determinant of their coefficients a1b − ab1 is non-zero.
Furthermore, the inclusion cannot hold if ι1 and ι are anti-parallel, which is
the case if the coefficients for x have different signs, and similarly for y. Oth-
erwise, the intersection points with the y-axis of ι1 and ι are calculated and
compared. In particular, the subset relation {x | a1x ≤ c1} ⊆ {x | ax ≤ c}
implies that x ≤ c

a if x ≤ c1
a1

, assuming that a1 > 0 and a > 0. The latter is
equivalent to c1

a1
≤ c

a
, and since a is positive, a

a1
c1 ≤ c follows. Now assume

a1 < 0 and a < 0. From x ≥ c
a , if x ≥ c1

a1
, then c1

a1
≥ c

a follows. Multiplying by
a < 0 yields a

a1
c1 ≤ c. If a1 = 0 but b1 �= 0, the intersection points with the

x-axis can be calculated and compared. If b1 = 0, too, then ι1 is tautologous
or unsatisfiable, which is handled by the implication that formed the last case.

The second test, {ι1, ι2} � ι, reduces to the first test whenever ι1 and
ι2 are parallel – that is, if the determinant of the coefficients a1b2 − a2b1 is
zero. Otherwise, a linear combination of ι1 and ι2 is calculated, yielding an
inequality that is parallel to ι. Specifically, λ1 and λ2 are calculated such that
λ1a1 + λ2a2 = a and λ1b1 + λ2b2 = b. If either λ1 or λ2 is negative, the
resulting half-space of the parallel inequality faces the opposite direction and
the inequality ι is not entailed. If both λ1 and λ2 are positive, entailment can
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Fig. 7.4. The entailment check P1 �P P2 is reduced to checking entailment
{ι1, ι2} � ι of each inequality ι of P2 with respect to some ι1, ι2 of P1.

be determined by comparing the constant of the parallel inequality, namely
λ1c1 + λ2c2, with the constant of ι.

Due to the ability to sort inequalities by angle, this constant-time entail-
ment check between three inequalities can be lifted to a linear-time entailment
check between two planar polyhedra, as presented in the next section.

7.2 Operations on Sets of Inequalities

In the following, we present operations on planar polyhedra that exploit the
fact that inequalities can be sorted by angle. Given this order on inequalities,
entailment, redundancy removal, the convex hull, and a linear programming
algorithm can all be implemented efficiently.

7.2.1 Entailment Check

By traversing the inequalities so that their angles are increasing, a linear-time
entailment check between two planar polyhedra can be implemented. Consider
the task of checking whether P1 �P P2; that is, if P1 ⊆ P2 holds. It is sufficient
to show that each inequality ι that defines a facet of P2 contains the polyhe-
dron P1, as shown on the left of Fig. 7.4. Specifically, it is sufficient to find the
two adjacent inequalities ι1, ι2 of P1 that are angle-wise no larger and strictly
larger than ι and ensure that {ι1, ι2} � ι. All inequalities in P1 that are not
tested in this way will only make the inner polyhedron P1 smaller and hence
cannot affect the outcome of the entailment check. Algorithm 2 formalises
this idea. Here, the trivial cases of P1 = ∅ and P2 = ∅ are checked before the
inequalities that constitute the two polyhedra are extracted with indices that
increase with the angle. For each inequality ιi in the facet list of P2, the inner
loop in lines 12–15 finds two adjacent inequalities ιl mod n, ιu mod n in P1 that
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Algorithm 2 Checking entailment between planar polyhedra.
procedure entails(P1, P2)
1: if P1 = ∅ then
2: return true
3: end if
4: if P2 = ∅ then
5: return false
6: end if
7: [[{ι0, . . . ιn−1}]] ← P1 /* such that θ(ι0) ≤ θ(ι1) ≤ . . . ≤ θ(ιn−1) */
8: [[{ι′0, . . . ι′m−1}]] ← P2 /* such that θ(ι′0) ≤ θ(ι′1) ≤ . . . ≤ θ(ι′m−1) */
9: u ← 0

10: l ← n − 1
11: for i ∈ [0, m − 1] do
12: while u < n ∧ θ(ιu) < θ(ι′i) do
13: l ← u
14: u ← u + 1
15: end while
16: if {ιl mod n, ιu mod n} �� ι′i then
17: return false
18: end if
19: end for
20: return true

enclose the inequality ιi angle-wise. If the entailment {ιl mod n, ιu mod n} � ιi
holds for all ιi and corresponding ιl mod n, ιu mod n, then P2 is entailed by P1.
Note that the total number of times the inner loop iterates is |I2|, where
[[I2]] = P2. The whole algorithm runs in O(|I1| + |I2|), where [[I1]] = P1 and
its input is thereby linear in size.

A slightly more complicated iteration strategy is necessary to remove re-
dundant inequalities from a system. This task is the topic of the next section.

7.2.2 Removing Redundancies

This section presents an algorithm to remove redundant inequalities. Although
most algorithms presented in this chapter take and return non-redundant
systems of inequalities, redundancy removal is important for adding new
inequalities to a system as required to implement the meet operation �P

of the polyhedral domain. Specifically, define the function nonRedundant
({ι1, . . . , ιm}), which takes a set of inequalities {ι1, . . . , ιm} that are sorted
by angle. We use the notation 〈ι1, . . . , ιm〉 to describe a sorted sequence of
elements that in practice may be implemented as a doubly linked list. In this
representation, assigning a sequence 〈ιm, ι1, . . . ιm−1〉 to I is a constant-time
operation that rotates the original sequence I = 〈ι1, . . . ιm〉 one position to
the right.
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Fig. 7.5. A chain of inequalities ι1, . . . ι4 that are non-redundant with respect to
their neighbours but are redundant with respect to ι9 and ι5.

The key to removing redundant inequalities lies in the observation that the
inequality ιi is redundant if {ι(i−1) mod m, ι(i+1) mod m} � ιi. Checking each
inequality once against its neighbours is not sufficient to determine that no
such pair of inequalities exists since each time an inequality is removed, the
previously separate neighbours become adjacent, which might make one of
them redundant, too. This is illustrated in Fig. 7.5. Here, the feasible space
of the polyhedron is shown in grey, and hence the inequalities ι10, ι1, . . . ι4
are redundant. Consider a redundancy removal function that starts check-
ing each inequality from ι1 onwards. Since {ι10, ι2} �� ι1, the inequality ι1
is non-redundant with respect to its two neighbours and iteration proceeds
to infer {ι1, ι3} �� ι2, {ι2, ι4} �� ι3, and so forth. It is not until iteration ten
when {ι9, ι1} � ι10 that ι10 is discarded. If iteration stops here, the redun-
dant inequalities ι1, . . . ι4 are not detected as such and an incorrect result is
returned. In a correct implementation, iteration has to proceed until a fixpoint
is reached – that is, until each inequality is found to be non-redundant.

This strategy is implemented as Alg. 3. The input inequalities are stored
in I in increasing angular order. The variable todo tracks the number of in-
equalities that still need to be examined and is initially set to the size of the
sequence I. Lines 4–5 stop the loop short when the size of the system is so
small that there is no neighbour to test against which, in turn, would lead to
the incorrect removal of the single remaining inequality. Otherwise, |I| ≥ 2
and the conditional in line 8 tests if the first inequality in I is redundant
with respect to its two neighbours. If ι1 is redundant, lines 9–10 remove this
inequality from I and the todo counter is reset to enforce that every inequal-
ity in I is checked once more. Lines 12–13 deal with the case where ι1 is
non-redundant, in which case the sequence I is rotated in order to check the
next inequality. In this case, the todo counter is merely decremented, with
the effect that the loop eventually stops when all remaining inequalities are
non-redundant. With respect to the running time of the algorithm, observe
that Fig. 7.4 constitutes the worst-case scenario, in which the loop iterates
over a maximum chain of inequalities until the last inequality ι10 is found to
be redundant. At this point, todo is repeatedly reset to |I| until ι4 is removed
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Algorithm 3 Removal of redundant inequalities.
procedure nonRedundant({ι1, . . . ιn})
1: I ← 〈ι1, . . . ιn〉 /* θ(ι1) ≤ θ(ι2) ≤ . . . ≤ θ(ιn) */
2: todo ← |I|
3: while todo > 0 do
4: if |I| ≤ 1 then
5: return I
6: end if
7: 〈ι1, . . . ιm〉 ← I
8: if {ιm, ι2} � ι1 then
9: I ← 〈ιm, ι2, ι3, . . . ιm−1〉

10: todo ← |I|
11: else
12: I ← 〈ι2, ι3, . . . ιm−1, ιm, ι1〉
13: todo ← todo − 1
14: end if
15: end while
16: return I

and the loop iterates further until ι9, only to find that all inequalities are
non-redundant. In summary, the algorithm runs for at most two complete it-
erations such that it is in O(n), where n is the number of input inequalities.
Note that the first inequality in the returned set I does not necessarily have
the smallest angle. Rather than sorting the resulting set, it can be rotated
until the smallest inequality is at the beginning of the sequence.

A special case arises when the input to nonRedundant is an unsatisfiable
set of inequalities. The algorithms will terminate with either I = {ι0, ι1},
where ι0�ι1 = π, or with I = {ι0, ι1, ι2}, where ιi�ι(i+1) mod 3 < π. In the
former case, the coefficients of the inequalities need to be compared in order
to detect that their intersection is empty. In the latter case, the boundaries
of the half-spaces [[ι0]] and [[ι1]] intersect in a point 〈vx, vy〉. The system is
unsatisfiable if 〈vx, vy〉 /∈ [[ι2]] (i.e. if avx + bvy > c) where ι2 ≡ ax + by ≤ c.

This completes the description of the redundancy removal algorithm that
forms the basis for the meet operation. We now proceed to define the join
operation, which turns out to be the most intricate.

7.2.3 Convex Hull

In 1972, Graham published the first sub-quadratic algorithm to compute the
convex hull of a set of points in planar space [84]. Since then, numerous im-
provements [2, 4, 5, 36, 113] and extensions to polytopes [146, 179] have been
proposed. An overview can be found in [147,160]. Interestingly, some of these
improvements turned out to be incorrect, [88, 179, 180] which suggests that
geometric algorithms are difficult to construct correctly. While the convex
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Algorithm 4 Calculating an inequality from two points.
procedure connect(〈x1, y1〉, 〈x2, y2〉)

return (y2 − y1)x + (x1 − x2)y ≤ (y2 − y1)x1 + (x1 − x2)y1

hull of polytopes (bounded polyhedra) can be calculated straightforwardly by
taking the convex hull of their extreme points, calculating the convex hull of
unbounded polyhedra turns out to be more subtle due to a large number of
geometric configurations. Even for planar polyhedra, the introduction of rays
makes it necessary to handle polyhedra such as a single half-space, a single
ray, a single line, two facing (not coinciding) half-spaces, etc., all of which re-
quire special handling in a point-based algorithm. The problem is exacerbated
by the number of ways these special polyhedra can be combined. In order to
simplify the correctness argument, we present a direct reduction of the con-
vex hull problem of planar polyhedra to the classic convex hull problem for
a set of points. The idea of the algorithm presented is to confine vertices of
the input polyhedra to a box and to use the rays to translate these points
outside the box. A linear pass around the convex hull of all these points is
then sufficient to determine the resulting polyhedron. This approach inher-
its the time complexity of the underlying convex hull algorithm, which is in
O(n log n) [84]. Our algorithm follows the standard tactic for calculating the
convex hull of polyhedra that are represented as sets of inequalities, namely
to convert the input into an intermediate ray and vertex representation. Two
approaches to the general (n-dimensional) conversion problem are the double
description method [132] (also known as the Chernikova algorithm [44, 117])
and the vertex enumeration algorithm of Avis and Fukuda [6]. While our ap-
proach is linear, the Chernikova method leads to a cubic time solution for
calculating the convex hull of planar polyhedra [117], whereas the method of
Avis and Fukuda is quadratic.

Before we detail the algorithm itself, we define a few auxiliary functions.
We then give an explanation in the context of an example in which the join of
a bounded polyhedron and a polyhedron with two rays is calculated. A note
on degenerated input polyhedra and their treatment completes the description
of the algorithm.

Auxiliary Functions

The auxiliary function intersect(a1x + b1y ≤ c1, a2x + b2y ≤ c2) calculates
the set of intersection points of the two lines a1x + b1y = c1 and a2x +
b2y = c2. In practice, an implementation of this function only needs to be
partial since it is only applied when the resulting set contains a single point.
Algorithm 4 presents connect , which generates an inequality from two points
subject to the following constraints: the half-space induced by connect(p1, p2)
has p1 and p2 on its boundary and, if p1, p2, p3 are sorted counterclockwise,
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Algorithm 5 Algorithm to calculate the generators of a planar polyhedron.
procedure extreme({ι0, . . . ιn−1}) where θ(ι0) ≤ θ(ι1) ≤ . . . θ(ιn−1)
1: 〈V, R〉 ← 〈∅, ∅〉
2: if n=1 then
3: ax + by ≤ c ← ι0
4: R ← 〈−a/

√
a2 + b2,−b/

√
a2 + b2〉

5: end if
6: for i ∈ [0, n − 1] do
7: ax + by ≤ c ← ιi
8: dpre ← ι(i−1) mod n�ιi ≥ π ∨ n = 1
9: dpost ← ιi�ι(i+1) mod n ≥ π ∨ n = 1

10: if dpre then
11: R ← R ∪ {〈b/

√
a2 + b2,−a/

√
a2 + b2〉}

12: end if
13: if dpost then
14: R ← R ∪ {〈−b/

√
a2 + b2, a/

√
a2 + b2〉}

15: else
16: V ← V ∪ intersect(ιi, ι(i+1) mod n)
17: end if
18: if dpre ∧ dpost then
19: V ← V ∪ {v} where v ∈ {〈x, y〉 | ax + by = c}
20: end if
21: end for
22: return 〈V, R〉

then p3 is in the feasible space. The notation p1, p2 is used to abbreviate
connect(p1, p2). Furthermore, the predicate saturates(p, ι) holds whenever the
point p is on the boundary of the half-space defined by the inequality ι; that
is, saturates(〈x1, y1〉, ax + by ≤ c) iff ax1 + by1 = c. Finally, the predicate
inBox (s, p) holds whenever the point p is strictly contained within a square
of width 2s that is centred on the origin; specifically, inBox (s, 〈x, y〉) iff |x| <
s ∧ |y| < s.

A Typical Run of the Algorithm

The algorithm divides into a decomposition and a reconstruction phase. The
hull function, presented as Alg. 6, decomposes the input polyhedra into their
corresponding ray and vertex representations by calling the function extreme
in lines 4 and 5, which is defined as Alg. 5. The remainder of the hull function
reconstructs a set of inequalities whose half-spaces enclose both sets of rays
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Algorithm 6 Calculating the convex hull of planar polyhedra.
procedure hull(I1, I2) where each Ii satisfiable, sorted by angle, non-redundant
1: if I1 = ∅ ∨ I2 = ∅ then
2: return ∅
3: end if
4: 〈P1, R1〉 ← extreme(I1)
5: 〈P2, R2〉 ← extreme(I2)
6: P ← P1 ∪ P2

7: R ← R1 ∪ R2 /* Note: |R| ≤ 8 */
8: s ← 1 + max{|x|, |y| | 〈x, y〉 ∈ P}
9: Q ← P

10: for 〈〈x, y〉, 〈a, b〉〉 ∈ P × R do
11: Q ← Q ∪ {〈x + 2

√
2sa, y + 2

√
2sb〉}

12: end for
13: if Q = {〈x1, y1〉} then /* result is zero dimensional (a point) */
14: return {x ≤ x1, y ≤ y1,−x ≤ −x1,−y ≤ −y1}
15: end if
16: qp ← 〈

∑
〈x,y〉∈Q x/|Q|,

∑
〈x,y〉∈Q y/|Q|〉 /* qp is feasible, but not a vertex */

17: 〈q0, . . . , qn−1〉 ← sort(qp, Q) /* sort points by angle with qp */
/* identify the vertices qki where 0 ≤ k0 < . . . < km−1 < n */

18: 〈qk0 , . . . , qkm−1〉 ← scan(〈q0, . . . , qn−1〉)
19: Ires ← ∅
20: for i ∈ [0, m − 1] do
21: 〈x1, y1〉 ← qki

22: 〈x2, y2〉 ← qk(i+1) mod m

23: ι ← connect(〈x1, y1〉, 〈x2, y2〉) /* add ι to Ires if qki or qki+1 is in the box */
24: add ← inBox (s, 〈x1, y1〉) ∨ inBox (s, 〈x2, y2〉) ∨ m = 2
25: j ← (ki + 1) mod n
26: while ¬add ∧ j �= ki+1 do /* ...or any point on ι is in the box */
27: add ← saturates(qj , ι) ∧ inBox (s, qj)
28: j ← (j + 1) mod n
29: end while
30: if m = 2 ∧ inBox (s, 〈x1, y1〉) then
31: if y1 = y2 then
32: Ires ← Ires ∪ {sgn(x1 −x2)x ≤ sgn(x1−x2)x1}
33: else
34: Ires ← Ires ∪ {sgn(y1 − y2)y ≤ sgn(y1 − y2)y1}
35: end if
36: end if
37: if add then
38: Ires ← Ires ∪ {ι}
39: end if
40: end for
41: return Ires
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Fig. 7.6a. Calculate a square around the origin that includes all vertices.

1

5

1 5

y

x

Fig. 7.6b. Translate all vertices along the rays such that they lie outside the square.

and points. The algorithm requires that the input polyhedra be non-redundant
and sorted; its output is also non-redundant and sorted.

In order to illustrate the algorithm, consider Fig. 7.6a. The polyhedron
I = {ι0, ι1, ι2} and the polytope I ′ = {ι′0, . . . , ι′5} constitute the inputs to
the hull function. They are passed to the function extreme at lines 4 and 5.
Note that we assume that the set of inequalities is sorted by angle such that
their indices increase with the angle. The loop at lines 6–22 examines the
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Fig. 7.6c. Calculate the convex hull of all points.
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Fig. 7.6d. The three inequalities qk4 , qk5 , qk5 , qk6 and qk6 , qk7 define a polyhedron
that includes the two polyhedra I = {ι0, ι1, ι2} and I ′ = {ι′0, . . . ι′5} from Fig. 7.6a.

relationship of each inequality with its two angular neighbours. If dpost is false,
the intersection point intersect(ιi, ι(i+1) mod n) is a vertex, which is added at
line 16. In the example, two vertices are created for I, namely v1 and v2,
where {v1} = intersect(ι0, ι1) and {v2} = intersect(ι1, ι2). Six vertices are
created for I ′. Conversely, if dpost is true, the intersection point is degenerate;
that is, either I contains a single inequality or the angular difference between
the current inequality and its successor is greater than or equal to π. For
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instance, intersect(ι2, ι0) is degenerated and thus is not added to V . In the
case of degenerated intersection points, dpre or dpost is true and rays are
created at line 11 or 14, respectively. The two rays along the boundaries of
ιi and ι(i+1) mod n are generated in loop iteration i when dpost is true and
iteration (i + 1) mod n when dpre is true. In our example, dpost is true for ι2,
generating a ray along the boundary of ι2 that recedes in the direction of the
first quadrant, whereas dpre is true for ι0, yielding a ray along ι0 that recedes
towards the second quadrant. No rays are created for the polytope I ′ because
dpost and dpre are false for all inequalities ι′0, . . . ι

′
5.

In general, both flags might be true – e.g., for anti-parallel half-spaces. In
this case, the inequality ιi cannot define a vertex, and an arbitrary point on
the boundary of the half-space of ιi is created at line 19 to fix its representing
rays in space. Another case not encountered in this example arises when the
polyhedron consists of a single half-space (|I| = 1). In this case, line 4 creates
a third ray to indicate the side on which feasible space lies. Note that R has
never more than four elements, a case that arises when describing two facing
half-spaces.

The remainder of the hull function is dedicated to the reconstruction
phase. The point and ray sets, returned by extreme, are merged at lines 6
and 7. At line 8, the size of a square is calculated, which includes all points
in P . The square has 〈s, s〉, 〈−s, s〉, 〈s,−s〉, 〈−s,−s〉 as its corners. The square
in the running example is depicted at all stages with a dashed line. Figure 7.6b
shows how each point p ∈ P is then translated by each ray r ∈ R yielding the
point set Q. The translated points are always outside the square since rays are
normalised and then scaled by 2

√
2s, which corresponds to the largest extent

of the square, namely its diagonal. Lines 13–14 are not relevant to this exam-
ple, as they trap the case where the output polyhedron consists of a single
point. Line 16 calculates a feasible point qp of the convex hull of Q that is
not a vertex. This point serves as the pivot point in the classic Graham scan.
Firstly, the point set Q is sorted counterclockwise with respect to qp. Secondly,
all interior points are removed, yielding the indices of all vertices in the case
of the example k0, . . . k7, as shown in Fig. 7.6c. What follows is a round-trip
around the hull that translates pairs of adjacent vertices into inequalities by
calling connect at line 23. Whether this inequality actually appears in the
result depends on the state of the add flag. In our particular example, the
add flag is only set at line 24. Whenever it is set, it is because one of the two
vertices lies within the square. The resulting polyhedron is shown in Fig. 7.6d
and consists of the inequalities qk4 , qk5 , qk5 , qk6 , and qk6 , qk7 , which is a correct
solution for this example.
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Fig. 7.7a. Creating a point in the box for each line.

1

5

1 5

y

x

qk0

qk1

qk2

qk3
qk4

qp

qj

Fig. 7.7b. Creating inequalities if one of the points lies in the box.

Pathological Configurations

The reconstruction phase has to consider certain anomalies that mainly arise
in outputs of lower dimensionality. One subtlety in the two-dimensional case
is the handling of polyhedra that contain lines. This is illustrated in Fig. 7.7a,
where the two inequalities ι0, ι1 are equivalent to one equation that defines a
space that is a line or, equivalently, two opposing rays. The result of translating
the vertices by the two rays and their convex hull is shown in Fig. 7.7b.
Observe that no point in the square is a vertex in the hull of Q. Therefore,
the predicate inBox does not hold for the two vertices qk1 and qk2 and the
desired inequality qk1 , qk2 is not emitted. The same holds for qk4 and qk0 .
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Fig. 7.8. Handling the one-dimensional case.

However, in such cases there always exists a point qj ∈ Q with qp, qki
�qp, qj <

qp, qki�qp, qk(i+1) mod m
that lies in the square. Hence, it is sufficient to search

for an index j ∈ [ki + 1, k(i+1) mod m − 1] such that qj is both in the square
and on the line connecting the vertices qki

and qk(i+1) mod m
. The inner loop at

lines 26–29 tests if Q contains such a point and sets add appropriately. In the
example, qk1 , qk2 and qk4 , qk5 are each saturated by a point in the square and
are in fact the only inequalities in the output.

The one-dimensional case is handled by the m = 2 tests at lines 24 and 30.
Figure 7.8 illustrates the necessity of the first test. Suppose I1 and I2 are given
such that extreme(I1) = 〈{q4, q5}, ∅〉 and extreme(I2) = 〈{q3}, {r,−r}〉, where
r is any ray parallel to q4, q5. Observe that all points are collinear; thus the
pivot point is on the line and a stable sort could return the ordering depicted in
the figure. The correct inequalities for this example are Ires = {q0, q8, q8, q0}.
The Graham scan will identify qk0 = q0 and qk1 = q8 as vertices. Since there
exists j ∈ [k0+1, k1−1] such that inBox (s, qj) holds, q0, q8 ∈ Ires. In contrast,
although there are boundary points between q8 and q0, the loop is not aware
of them since sorting the points removed all points between q8 and q0. In this
case, the m = 2 test sets add and thereby forces q8, q0 ∈ Ires.

Another complication arises when generating line segments, as shown in
Fig. 7.9. Observe that the output polyhedron must include qki

as a vertex
whenever inBox (s, qki

) holds. If inBox (s, qki
) holds, the algorithm generates

the inequalities ιi−1 = qk(i−1) mod m
, qki and ιi = qki , qk(i+1) mod m

. If ιi−1�ιi < π,
then {qki

} = intersect(ιi−1, ιi) and the vertex qki
is realised. However, if

m = 2, then ιi−1�ιi = π, which requires an additional inequality to define the
vertex qki . This is the role of the inequalities generated on lines 32 and 34.
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Fig. 7.9. Joining a vertex that lies on a ray with the ray itself.

This new inequality ι obeys ιi−1�ι < π and ι�ιi < π and thus suffices to
define qki

.
The last special case to be considered is a result that is zero-dimensional.

This case can only occur when both input polyhedra consist of the same single
point v. Line 13 traps this case and returns a set of inequalities describing {v}.

Even though some subtle problems arise in dealing with the pathological
cases that occur, note that the zero- and one-dimensional cases only require
minute changes to the general two-dimensional case. We show in [168] that
these modifications are indeed sufficient to ensure that the algorithm is correct
on all possible inputs.

Special care has to be taken when implementing the actual convex hull
algorithm. The pivot point calculated in line 16 of Alg. 6 is likely to have ra-
tional coordinates with large numerators and denominators, thereby slowing
down the algorithm. The original algorithm of Graham [84] creates an interior
point as the pivot point by choosing two arbitrary points q1, q2 and searching
the point set for a point qi that does not saturate the line q1, q2. The center
of the triangle q1, q2, qi is also guaranteed to be an interior point of Q. While
the pivot point so found may have a smaller representation, generating in-
equalities from the resulting sequence of vertices does not guarantee that the
first inequality generated will have the smallest angle of all inequalities. The
disadvantage is that the resulting sequence of inequalities needs to be rotated
until the sequence is in increasing order. Another pitfall is when two or more
points lie on a line with the pivot point and thereby compare as equal even
though the points have different coordinates. Graham suggests retaining only
the point that lies farthest away from the pivot point since only the outermost
point can ever become a vertex of the convex hull. However, the removal of
points is also at odds with our algorithm, as the input point set may not be
modified. A common way to address this problem is to perturb the input point
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Fig. 7.10. Sorting points that are on a line with the pivot point qp.

set slightly, thereby guaranteeing that no three points lie on a line [68]. For a
sound analysis, the perturbation would have to be removed after the convex
hull algorithm finishes, which complicates the algorithm further.

Our approach to circumventing these problems is to pick one point from the
input set that is a definite vertex and use this point as the pivot point (as pro-
posed in [4]). Specifically, we choose the vertex with the largest x-coordinate
and the smallest y-coordinate (in that order). Creating inequalities starting
with this vertex is guaranteed to generate a sequence with strictly increasing
angles. As before, complications arise when ordering points that lie on a line
with the pivot point. For instance, q1, . . . q7 in Fig. 7.10 are to be returned in
increasing sequence. However, the pairs q1, q2 and q6, q7 compare as equal since
they have the same angle to the pivot point qp. By enhancing the comparison
function to lexicographically sort by angle, then by larger x-coordinates, and
then by smaller y-coordinates, the points q6 and q7 are sorted in the correct
order, thereby leaving the other pair in the incorrect order q2, q1. To ensure
that the points q1 and q2 appear in increasing sequence, all points at the
beginning of the sequence that lie on a line with qp are reversed.

Finally, observe that the loop at lines 26–29 can often be skipped: If the
line between qki

and qk(i+1) mod m
does not intersect with the square, inBox (s, q)

cannot hold for any q ∈ Q. In this case, add cannot set in line 27, and the
loop has no effect. Hence, if all corners of the box lie in the feasible region of
the potential inequality qki

, qk(i+1) mod m
, the loop can safely be skipped. These

special cases complete the description of the convex hull on planar polyhedra.

7.2.4 Linear Programming and Planar Polyhedra

Determining the set of fields that a pointer may access requires the minimum
and maximum offsets that the pointer variable can take on at the given pro-
gram point. In general, possible values of an expression a · x with respect to
a given polyhedron P ∈ Poly can be inferred by running a linear program
minExp twice, once for an upper bound and once for a lower bound on the
expression. In fact, finding the tightest bounds [l, u] such that l ≤ a · x ≤ u
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Fig. 7.11. Calculating the maximum of a linear expression in a planar polyhedron.

holds in P can be implemented more simply in planar space: Finding the up-
per bound u amounts to finding a minimal u such that P�P [[ax+by ≤ u]] = P .
To this end, Fig. 7.11 depicts the line ax + by = c and its coefficient vector
〈a, b〉 as a vector that points towards the direction of larger values of c. The
minimal value of u can be found by increasing u until P �P [[ax+ by ≤ u]] = P
holds. In practice, an inequality ιi of P can be found in O(log n) time such
that θ(ιi) ≤ θ(ax + by ≤ u) < θ(ι(i+1) mod n) by performing a binary
search on the sorted set of inequalities with θ(ax + by ≤ u) as the key. If
θ(ιi) = θ(ax + by ≤ u), then u = ci, where ιi ≡ aix + biy ≤ ci. Otherwise, if
ιi�ι(i+1) mod n < π, then the intersection point 〈x′, y′〉 of the two inequalities
yields the minimal value of u, namely u = ax′ + by′. Otherwise, no upper
bound exists and u = ∞. The lower bound l can be inferred in a similar way
using the angle θ(−ax− by ≤ −l) as key.

Inferring the bounds of a single variable x is a special case that reduces to
finding the vertex with the smallest and largest x-coordinates. Incidentally, the
projection operator ∃y for planar polyhedra can be implemented by inferring
the bounds on x and returning the corresponding interval. For instance, the
projection operation P ′ = ∃x(P ) yields P ′ = [[{l ≤ y ≤ u}]] iff [l, u] = P (y)
and l �= −∞, u �= ∞. In practice, our implementation stores the upper and
lower bounds of each variable explicitly so that a projection onto one variable
is unnecessary.

The explicit representation of bounds also impacts on the way widening is
implemented, which is the next and final planar operation.

7.2.5 Widening Planar Polyhedra

Calculating the fixpoint of a loop using polyhedra may result in an infinite
chain of iterates. By removing inequalities that describe changing facets of a
polyhedron, the fixpoint calculation is accelerated and in fact forced to con-
verge, a process known as widening [59,62]. Suppose that two consecutive loop
iterates I1 = {y ≥ 1, 2x + y ≤ 20, 2x − 3y = 1} and I2 = {x + y ≥ 3, x ≤ 8,
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Fig. 7.12. Planar polyhedra may have several representations if they extend in less
than two dimensions (degrees of freedom).

2x − 3y = 1} are given as shown in Fig. 7.12. Both systems describe the
same set of points [[I1]] = [[I2]] and hence [[I1]]∇[[I2]] = [[I1]] since the iterates
are stable. Thus, since I1 �= I2, widening cannot generally be implemented
as a syntactic operation and has to be defined semantically; that is, in terms
of entailment [62]. In particular, the original widening is defined such that
[[I1]]∇[[I2]] = [[I ′]], where [[I ′]] = ∅ if [[I1]] = ∅ and otherwise ι ∈ I ′ if ι ∈ I1and
[[I2]] �P [[ι]]. While this operation can be implemented similarly to the entail-
ment check on planar polyhedra, an even simpler implementation is possible
in the context of the TVPI domain described in the next chapter, where each
planar polyhedron has a unique representation. Given a unique representation
of a planar polyhedron, widening can be implemented in a purely syntactic
way, as it reduces to a simple set-difference operation.

The next chapter elaborates on how to use the algorithms presented on
planar polyhedra to implement polyhedra of arbitrary dimension where each
inequality has at most two non-zero coefficients.
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The TVPI Abstract Domain

This chapter presents the abstract domain of polyhedra, where each facet can
be described by an inequality that has at most two non-zero variables. These
so-called TVPI polyhedra form a proper subset of general convex polyhedra.
For instance, consider the inequality set {x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1}.
The resulting state space is depicted on the left of Fig. 8.1. This system can be
approximated with TVPI inequalities by replacing the inequality x+y+z ≤ 1
with three inequalities of the forms x + y ≤ cxy, x + z ≤ cxz, and y + z ≤
cyz. The constant cxy can be determined by inserting the bounds for z into
x+y+z ≤ 1, yielding x+y+[0, 1] ≤ 1. Moving the interval to the right yields
x + y ≤ 1− [−1, 0]; that is, x + y ≤ 1 + [0, 1]. Thus, the tightest bound that
can be inferred for x+y is cxy = 1, and similarly cxz = cyz = 1. The resulting
space is depicted on the right of the figure. Note that no TVPI approximation
exists if the variables are not bounded from below; for instance, the polyhedron
[[x + y + z ≤ 1]] has no TVPI approximation. Thus, TVPI polyhedra are a
strict subset of general polyhedra.

An interesting property of TVPI inequalities is that they are closed under
projection. Consider projecting I = {2x + 3y ≤ 4,−2y + 2z ≤ 2} onto the
x, z-plane by applying Fourier-Motzkin variable elimination [104] on y. This
is carried out by scaling the first inequality by 2 and the second by 3 and
adding them to yield 2x + 3z ≤ 7, which describes all possible x, z-values of
the original polyhedron [[I]]. The observation is that projecting out variables of
TVPI inequalities removes a common variable and thereby yields an inequality
with at most two variables.

Interestingly, when the coefficients of inequalities are normalised to their
lowest common denominator, the number of inequalities that can be added
through projection is polynomial in the size of the input system [138]. The
process of calculating all projections is called closure. In a closed system, the
set of inequalities containing the variables xi, xj ∈ X expresses all information
that is available with respect to these variables. In fact, the key idea of the
TVPI domain is to apply the planar operations on each xi, xj-projection of a
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Fig. 8.1. Approximating a three-dimensional polyhedron with TVPI inequalities.

closed TVPI system, which is equivalent to applying the domain operations
of general polyhedra on the whole TVPI system, albeit more efficient.

The next section proves this equivalence by reducing operations on TVPI
polyhedra to planar polyhedra. Section 8.2 then comments on issues arising in
an actual implementation, such as how general inequalities are approximated.

8.1 Principles of the TVPI Domain

For the sake of this section, let var : Ineq → P(X ) extract the variables that
occur in an inequality; that is, var(a ·x ≤ c) = {xi | ai �= 0}. Let Ineq2 ⊂ Ineq
denote all TVPI inequalities; that is, Ineq2 = {ι ∈ Ineq | |var(ι)| ≤ 2}. The set
of all finite TVPI systems is therefore defined as Two = {I ⊆ Ineq2 | |I| ∈ N}.

In contrast to Poly ⊆ Qn, elements of Two are inequalities and we use
the notation [[I]] to denote the set of points that is entailed by the TVPI
inequality set I ∈ Two. This syntactic form is required to distinguish between
closed and non-closed TVPI systems. To this end, define a family of syntactic
projection operators πX(I) = {ι ∈ I | var(ι) ⊆ X} for all X ⊆ X . The set
of closed TVPI systems can now be defined as Twocl = {I ⊆ Two | ∀ι ∈
Ineq2 . [[I]] �P [[ι]] ⇒ [[πvar(ι)(I)]] �P [[ι]]}; that is, a TVPI system is closed if
any TVPI inequality ι that is valid in the whole system I is also valid when
considering only those inequalities of I that contain variables of ι. Intuitively,
this definition implies that all information about a pair of variables xi, xj ∈ X
is expressed as inequalities over these two variables. In particular, combining
inequalities such as axi − xk ≤ c1 and xk + bxj ≤ c2 with axi + bxj ≤ c1 + c2

does not add any new information about xi and xj . For instance, the system
I = {x ≤ y, y ≤ z} is not closed since [[π{x,z}(I)]] = [[∅]] = Q2, although the
inequality x ≤ y fulfills [[I]] �P [[x ≤ z]] and [[∅]] ��P [[x ≤ y]].

A closed form always exists within Two, as stated by the following propo-
sition.

Proposition 5. For any I ∈ Two, there exists I′ ∈ Twocl such that I ⊆ I ′

and [[I]] = [[I ′]].
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Proof. Define [[I]]x,y = ∃X\{x,y}([[I]]) for all x, y ∈ X , and set Ix,y ⊆ Ineq2

such that [[Ix,y]] = [[I]]x,y. Let I ′ = I ∪
⋃

x,y∈X Ix,y. Since each Ix,y is finite, I ′

is finite and hence I ′ ∈ Twocl. By the definition of ∃, [[I]] �P [[Ix,y]], and thus
[[I ∪ Ix,y]] = [[I]] for all x, y ∈ X and [[I]] = [[I ′]] follows. Moreover, I ⊆ I ′ by
construction.

In fact, any given TVPI system I ∈ Two can be closed to obtain I ′ ∈ Twocl

by calculating so-called resultants of I using result : Two → Two, defined as
follows:

result(I) =

⎧⎪⎪⎨
⎪⎪⎩ae z − db y ≤ af − dc

∣∣∣∣∣∣∣∣
ι1, ι2 ∈ I ∧
ι1 ≡ ax + by ≤ c ∧
ι2 ≡ dx + ez ≤ f ∧
a > 0 ∧ d < 0

⎫⎪⎪⎬
⎪⎪⎭

The purpose of the result function is to combine inequalities over the vari-
ables x, y and y, z with new inequalities over x, z, thereby making information
on x, z explicit that was only implicitly available before. In particular, the
combination above resembles Fourier-Motzkin variable elimination, where all
information on x, z is made explicit in order to remove the variable y from the
system. Nelson observed that merely adding inequalities (rather than remov-
ing those containing y) eventually leads to a closed system [138]. For instance,
consider applying the result function to the following system of inequalities:

I0 = {x0 ≤ x1, x1 ≤ x2, x2 ≤ x3, x3 ≤ x4}

We calculate I1 = result(I0) and I2 = result(I0∪I1), resulting in the following
sets:

result(I0) = {x0 ≤ x2, x1 ≤ x3, x2 ≤ x4}
result(I0 ∪ I1) = I1 ∪ {x0 ≤ x3, x0 ≤ x4, x1 ≤ x4}

Here, I3 = result(
⋃2

i=0 Ii) is a fixpoint in that result(I3) ⊆ I3. An important
property of I ∪ result(I) is the way it halves the number of variables required
to entail a given inequality ι ∈ Two. Suppose [[I]] �P [[ι]]. Then there exists
I ′ ⊆ I ∪ result(I) such that [[I ′]] �P [[ι]] and I ′ contains no more than half the
variables of I. Lemma 2 formalises this and is a reformulation of Lemma 1b
of [138].

Lemma 2. Let I ∈ Two and ι ∈ Ineq2 such that [[I]] �P [[ι]]. Then there exists
Y ⊆ X such that |Y | ≤ �|var(I)|/2�+ 1 and [[πY (I ∪ result(I))]] �P ι.

Lemma 2 suggests a way to obtain a closed system by applying the result
function approximately log2(|var(I)|) times to any system of inequalities I ∈
Two. More precisely, a TVPI system can be closed in O(k2d3 log(d)(log(k) +
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log(d))) steps, where d is the number of variables and k the maximum number
of inequalities for any pair of variables. Empirical evidence suggests that k is
bounded by a small constant in practice such that the bound collapses to
O(d3(log(d)2)) [172].

Rather than presenting such an algorithm, we detail how an initially empty
inequality system can be incrementally closed each time a new inequality is
added. An incremental closure is more amenable to abstract interpretation,
where the meet operation is mostly used to add a few inequalities to a system
before the inequality system is used in entailment checks, join calculations,
and projection operations.

Interestingly, applying the planar algorithms from the last chapter to each
syntactic projection π{xi,xj}(I) of a TVPI system I ∈ Twocl in most cases
results in a closed system. Besides this practical property, the next sections
also attest to the correctness of lifting the planar entailment check and the
join and projection algorithms to the TVPI domain.

8.1.1 Entailment Check

We show that checking entailment between two closed TVPI systems can be
reduced to checking entailment on each two-dimensional projection.

Proposition 6. Let I ′ ∈ Twocl and I ∈ Two. Then I ′ �P I iff [[πY (I ′)]] �P

[[πY (I)]] for all Y = {x, y} ⊆ X .

Proof. Suppose [[I ′]] �P [[I]]. Let ι ∈ πY (I). Then [[I ′]] �P [[I]] �P [[ι]].
Hence [[πvar(ι)(I ′)]] �P [[ι]]. Since var(ι) ⊆ Y , [[πY (I ′)]] �P [[ι]] and there-
fore [[πY (I ′)]] �P [[πY (I)]]. Now suppose [[πY (I ′)]] �P [[πY (I)]] for all Y =
{x, y} ⊆ X . Let ι ∈ I. Then ι ∈ πvar(ι)(I) and hence [[I ′]] �P [[πvar(ι)(I ′)]] �P

[[πvar(ι)(I)]] �P [[ι]].

Note that the proposition does not require that both inequality systems be
closed. This observation is interesting when applying operations to individual
projections that can lead to a non-closed system.

As a consequence of Prop. 6, it suffices to check that entailment holds for
all planar projections, which can be checked with the entails test presented
as Alg. 2 in Sect. 7.2.1 of the previous chapter.

8.1.2 Convex Hull

In order to show that calculating the join of two TVPI polyhedra can be
reduced to calculating the convex hull of each planar projection, we define the
operation � S as follows.

Definition 2. The piece-wise convex hull � S : Two×Two→ Two is defined
as I1 � S

I2 = ∪{Ix,y | x, y ∈ X}, where [[Ix,y]] = [[πx,y(I1)]]� [[πx,y(I2)]].
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The following proposition states that calculating the convex hull on each
planar projection results in a TVPI system that is closed if the two input
TVPI systems were closed. The value of this observation lies in the fact that
it is not necessary to calculate the O(d3(log(d)2)) complete closure after each
convex hull.

Proposition 7. I ′1 � S
I ′2 ∈ Twocl if I ′

1, I
′
2 ∈ Twocl.

Proof. Let ι ∈ Two such that [[I ′
1 � S

I ′2]] �P [[ι]]. Let x, y ∈ X and let [[Ix,y]] =
[[π{x,y}(I ′1)]]� [[π{x,y}(I ′2)]]. By the definition of I ′1, [[π{x,y}(I ′1)]] �P [[Ix,y]], and
therefore [[I ′1]] �P [[I ′1 � S

I ′2]]. Likewise [[I ′2]] �P [[I ′
1 � S

I ′
2]]; hence it follows

that [[I ′1]] �P [[ι]] and [[I ′2]] �P [[ι]]. Since I ′1, I
′
2 ∈ Twocl, [[πvar(ι)(I ′1)]] �P [[ι]]

and [[πvar(ι)(I ′2)]] �P [[ι]]; thus [[πvar(ι)(I ′
1)]] ⊆ [[ι]] and [[πvar(ι)(I ′2)]] ⊆ [[ι]]

and hence [[πvar(ι)(I ′2)]] ∪ [[πvar(ι)(I ′
2)]] ⊆ [[ι]]. Therefore [[πvar(ι)(I ′1 � S

I ′
2)]] =

[[πvar(ι)(I ′1)]]� [[πvar(ι)(I ′
2)]] ⊆ [[ι]] and hence [[πvar(ι)(I ′

1 � S
I ′
2)]] �P [[ι]] as

required.

The following proposition states the correctness of reducing the convex hull on
TVPI systems to planar convex hull operations on each projection π{xi,xj}(I).

Proposition 8. [[I ′1 � S
I ′
2]] = [[I ′1]]� [[I ′

2]] if I ′1, I
′
2 ∈ Twocl.

Proof. Since [[I ′1]] �P [[I ′
1 � S

I ′
2]] and [[I ′2]] �P [[I ′

1 � S
I ′
2]], and as [[I ′1 � S

I ′
2]]

is convex, it follows that [[I ′1]]� [[I ′
2]] ⊆ [[I ′1 � S

I ′2]]. Suppose there exists
〈c1, . . . , cn〉 ∈ [[I ′1 � S

I ′
2]] with 〈c1, . . . , cn〉 �∈ [[I ′]], where [[I ′]] = [[I ′1]] � [[I ′2]].

Thus [[
⋃n

i=1{xi ≤ ci, ci ≤ xi}]] ��P [[I ′]] and there exists axj + bxk ≤ c ≡ ι ∈ I ′

with [[
⋃n

i=1{xi ≤ ci, ci ≤ xi}]] ��P [[axj + bxk ≤ c]]. But [[I ′
1]] �P [[I ′]] �P [[ι]]

and [[I ′2]] �P [[I ′]] �P [[ι]]. Since I ′
1 ∈ Twocl and I ′2 ∈ Twocl, it follows that

[[π{xj ,xk}(I
′
1)]] �P [[ι]] and [[π{xj ,xk}(I

′
2)]] �P [[ι]]. Hence [[I ′1 � S

I ′2]] �P [[ι]], and
thus [[

⋃n
i=1{xi ≤ ci, ci ≤ xi}]] �P [[I ′

1 � S
I ′
2]] but 〈c1, . . . , cn〉 �∈ [[I ′1 � S

I ′2]],
which is a contradiction. Thus, [[I ′

1 � S
I ′
2]] = [[I ′1]]� [[I ′

2]].

Thus, an efficient way to calculate the convex hull of two closed TVPI systems
I1 and I2 is to apply the planar convex hull algorithm in Sect. 7.2.3 to each
pair xi, xj ∈ X of the syntactic projections π{xi,xj}(I1) and π{xi,xj}(I2).

8.1.3 Projection

Projection returns the most precise system without a given variable. An
algorithmic definition of projection is easily possible for closed systems. Propo-
sition 9 states that projection coincides with the definition of syntactic projec-
tion π; that is, projection can be implemented by removing all inequalities that
contain variables that are to be eliminated. Furthermore, we prove that this
operation preserves closure. We commence by defining syntactic projection.



152 8 The TVPI Abstract Domain

Definition 3. The syntactic projection operator ∃S
x : Twocl → Twocl is de-

fined as ∃S
x (I) = ∪{πY (I) | Y ⊆ X \ {x} ∧ |Y | = 2}.

Note that the projection function ∃S
x above operates on the inequality rep-

resentation of a polyhedron rather than a set of points. The following propo-
sition states that the syntactic projection defined above and the projection
operator on polyhedra, which operates on sets of points, coincide.

Proposition 9. ∃S
x ([[I ′]]) = [[∃x(I ′)]] and ∃S

x (I ′) ∈ Twocl for all I ′ ∈ Twocl.

Proof. By Fourier-Motzkin variable elimination, ∃x([[I ′]]) = [[I]], where I =
{ι ∈ I ′ | x �∈ var(ι)}. Observe that [[I]] �P [[∃S

x (I ′)]]. Now suppose ι ∈ I ′ such
that x �∈ var(ι). Since I ′ is closed, [[I ′]] �P [[ι]]. Hence [[πvar(ι)(I ′)]] �P [[ι]] and
therefore [[∃S

x (I ′)]] �P [[ι]], and thus [[∃S
x (I ′)]] �P [[I]] and hence [[∃S

x (I ′)]] = [[I]]
as required.

Now let ι ∈ Ineq2 such that [[∃S
x (I ′)]] �P [[ι]]. Moreover, [[I ′]] �P [[∃S

x (I ′)]] �P

[[ι]] and hence [[πvar(ι)(I ′)]] �P [[ι]]. Since x �∈ var(ι), [[πvar(ι)(∃S
x (I ′))]] �P [[ι]]

as required.

As an example, consider again the system consisting of x ≤ y and y ≤ z.
Closure will introduce x ≤ z. Projecting out y will only preserve x ≤ z, which
coincides with projection in that ∃y([[{x ≤ y, y ≤ z}]]) = [[x ≤ z]].

8.2 Reduced Product between Bounds and Inequalities

Given that most operations on a closed TVPI system are executed as oper-
ations on planar polyhedra over one specific pair of variables, it is prudent
to use a data structure for storing TVPI systems that groups the inequalities
by the pair of variables occurring in them. Given a domain of n = |X | vari-
ables, n(n − 1)/2 unique combinations of variables exist that can be stored
in a triangular matrix as shown in Fig. 8.2 for n = 3 and n = 4. The rows
of the triangular matrix are mapped to a one-dimensional array that dynam-
ically resizes. While indexing into this array is more complicated, it enables
the implementation to keep the number of variables in the polyhedron to a
minimum. This is important since the size of the matrix grows quadratically
with n. Since not all variables X are present in the polyhedron at all times,
it is possible to remove rows that correspond to variables that are projected
out and add a new row whenever a variable is mentioned that is not currently
represented in the matrix. If the underlying array is large enough, a new row
with the index n + 1 can be added by merely appending n new planar poly-
hedra to the end of the array, otherwise the matrix has to be copied to a
larger array. In the likely case that some of the variables with indices 0 . . . n
are bounded from above or below, these bounds have to be inserted into the
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Fig. 8.2. Adding a variable to a TVPI domain adds a row to the triangular matrix.

newly added polyhedra. Rather than duplicating upper and lower bounds of
each variable in each planar projection, we chose to implement the TVPI do-
main as a reduced product [50] between intervals and planar polyhedra that
contain TVPI inequalities of the form ax + by ≤ c, where both coefficients,
a and b, are non-zero. The principle is shown in the left schematic drawing
of Fig. 8.2. Here, the dashed lines depict the upper and lower bounds of each
variable, which are stored separately from the TVPI inequalities. The grey
polyhedra over 〈x0, x1〉, 〈x2, x0〉, and 〈x2, x1〉 are defined by these bounds
and the sets of TVPI inequalities that are specific to the given projection. In
this representation, a fourth variable is introduced by merely adding a new
range and three projections without any inequalities, one for each variable
pair 〈x3, x0〉, 〈x3, x1〉, and 〈x3, x2〉, as shown on the right of Fig. 8.2.

While the triangular matrix can always be extended with a new variable
by adding a new row to the matrix, the removal of a variable might require
the removal of a row that resides within the triangular matrix. For example,
consider the removal of x3 in the system depicted in Fig. 8.3. In order to avoid
holes in the matrix, the projections of x3 are replaced with those of the last
row in the system, namely x6. Specifically, the first three projections in the
last row 〈x6, xi〉, i = 1, . . . 3 simply replace the planar polyhedra 〈x3, xi〉 of
the row that is to be removed. While the projection 〈x6, x3〉 is merely deleted,
the remaining two projections 〈x6, x4〉 and 〈x6, x5〉 cannot overwrite the pro-
jections 〈x4, x3〉 and 〈x5, x3〉 since the x and y axes of the projections do not
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Fig. 8.3. Removing a variable from a TVPI domain that is stored as a matrix.

correspond. Thus, prior to replacing these target projections, the variables of
the two planar polyhedra have to be swapped, which geometrically amounts
to a mirroring along the x = y line, which is a linear-time operation. Specifi-
cally, a polyhedron that is stored as an array of inequalities that itself is sorted
by angle is mirrored by reversing the order of inequalities with an angle in
[0, π/2) and those in [π/2, 2π). Afterwards, the x- and y-coefficients in each
inequality are swapped.

Note that adding and removing rows provides an efficient framework to
implement in situ updates of variables. Consider an assignment of the form
x=e carried out on the state P , where e is an expression. In the special case
where e is of the form ax + b, the projections over x can be updated by
performing an affine transformation [62]. If e contains x in a more complex
(e.g., non-linear) calculation, the result is approximated using several inequal-
ities relating x to a fresh temporary variable t holding the result. In practice,
a new row for the temporary variable t is added that contains the result of
calculating the expression e. In order to set x to the value of t, the variable x
is projected out. Since t is stored in the last row of the triangular matrix, the
projections containing x are overwritten similarly to the removal in Fig. 8.3.
Thus, updating a variable can be implemented by adding a new row, calculat-
ing the result within this new row, and replacing the target variable with the
last row. If e does not mention x, the row of x can be emptied and updated
with e. Thus, an update only requires minimal changes to the matrix.

Next to updates using the meet operation, the performance of the domain
hinges on the join and entailment operations. The latter are mostly affected
by the way memory is managed. In our implementation, a TVPI domain is
merely a matrix in which each projection is a pointer to a planar polyhedron
that can be shared among several TVPI domains. Thus, creating a new copy
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Fig. 8.4. Variations of entailment check between an inequality and interval bounds.

of a domain merely requires copying the pointers in the matrix. Furthermore,
performing minor changes to the copy and calculating the join with the orig-
inal is cheap: If only a few projections are changed, most projections will still
refer to the same shared polyhedron. In this case, calculating the convex hull
can be avoided since the result is the same shared polyhedron. Similarly, an
entailment check holds trivially if the pointers to the projections are identical.

8.2.1 Redundancy Removal in the Reduced Product

The reduced product representation using interval bounds and TVPI inequal-
ities requires some substantial changes to the redundancy removal algorithm.
While the basic round-trip algorithm of Sect. 7.2.2 remains intact, special care
has to be taken with respect to interval bounds. In particular, they cannot
be converted to inequalities since they are often redundant with respect to
other TVPI inequalities and would thus be removed. Thus, the redundancy
removal algorithm only tests TVPI inequalities for redundancy and has to
consult inequalities and interval bounds for entailment checks. In particular,
special entailment tests are needed whenever inequalities lie in different quad-
rants; that is, if a bound lies angle-wise between two adjacent inequalities.
Figure 8.4 shows the two necessary entailment tests between inequalities and
interval bounds. The first schematic drawing depicts an inequality with no
adjacent inequalities in its quadrant. In this case, it is necessary to test the
inequality against the two nearest interval bounds. The second drawing shows
a redundant inequality ι1 that is the first in that quadrant. This inequality
needs to be tested with respect to the two nearest bounds and the next in-
equality ι2 in that quadrant. Similarly, the last inequality in each quadrant
needs to be tested against the two nearest interval bounds and the previous
inequality. In the case where an inequality has a neighbour on either side and
within the same quadrant, the normal entailment check can be applied.

Besides testing inequalities for redundancy with respect to the interval
bounds, the interval bounds may be too wide with respect to the inequalities.
Since interval bounds are never removed, they need to be tightened. Interval
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Fig. 8.5. Tightening interval bounds given two adjacent inequalities ι1, ι2. Bounds
shown with solid lines are tightened to the bounds shown with dashed lines. Case
one applies if ι1�ι2 < π and one bound lies between them, case two applies if two
bounds lie between ι1 and ι2, case three applies to those bounds that case two could
not tighten, and case four applies if ι1�ι2 > π.

bounds are tightened in four principal ways, as shown in Fig. 8.5. The first
case applies if the angle between the last inequality of a quadrant and the first
inequality in the next quadrant is less than π, in which case the inequalities
intersect in a point that might imply a tighter interval bound. The second case
applies if two inequalities ι1, ι2 obey ι1�ι2 < π and have an empty quadrant
(i.e., two bounds) between them. In this case, their intersection point might
tighten two bounds at once. If case two has not updated both bounds, one
or both bounds might be tighter than what the intersection point suggests.
In this case, the third schematic shows how one bound is tightened with
respect to the intersection point of one of the inequalities and the other bound.
The last graph in Fig. 8.5 depicts the fourth case, where the angle between
two inequalities is greater than or equal to π. Here a single inequality might
tighten the adjacent bound with the bound next to the adjacent bound. This
completes the suite of entailment checks and tightenings for interval bounds.

The above entailment checks and tightenings have to be adapted to all four
cardinal directions, which complicates the implementation of the redundancy
removal algorithm considerably. As a consequence, the implementation of the
actual algorithm is very technical and is therefore omitted. More interesting
is the implementation of the closure, which implicitly uses the redundancy
removal algorithm when adding inequalities to a projection.

8.2.2 Incremental Closure

Calculating the closure of a TVPI system as discussed in Sect. 8.1 can be
implemented by a variant of the Floyd-Warshall algorithm [54], which infers
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Fig. 8.6. Incremental closure after changing the projection x2, x4. New inequalities
in x3, x5 serve to calculate distance-one projections (Phase I). For each set of these
new inequalities, distance-two projections are calculated (Phase II).

the shortest paths between any pair of nodes in a graph. Specifically, the cubic
Floyd-Warshall algorithm on n variables creates n different n × n matrices,
where an element at 〈xi, xj〉 describes the cost of traversing the graph from
node xi to xj . Note that the cost of travelling from xi to xj might be different
from the cost of travelling from xj to xi. In the context of the triangular matrix
of a TVPI domain, the planar polyhedron at index 〈xi, xj〉 represents both
directions of travel due to the fact that inequalities of that polyhedron may
have positive as well as negative coefficients. Apart from this oddity, the Floyd-
Warshall algorithm is a closure operation on a TVPI system when adding the
cost of two edges between xi, xj and xj , xk is replaced by calculating the
resultants of the inequalities of the planar polyhedra over xi, xj and xj , xk.
Updating the edge xi, xk with the smaller of current cost and the cost via xj

corresponds to inserting these resultants into the target polyhedron xi, xk.
Unfortunately, calculating a complete closure of a TVPI system is at odds

with the needs of program analysis. Here, inequalities are usually added one by
one through conditionals or assignments. Furthermore, adding inequalities to
the domain is interleaved with variable removal and the calculation of joins.
Thus, an incremental closure is required that takes a closed system and a
set of inequalities that are to be intersected with a given projection xi, xj

and returns a new, closed system in which the inequalities are incorporated.
The incremental closure uses operations similar to those used in the Floyd-
Warshall algorithm, albeit with a different strategy. Specifically, the Floyd-
Warshall algorithm calculates a sequence of n matrices m1, . . . mn such that
the distance between nodes in matrix mi that are no more than i edges apart is
minimal. In contrast, the incremental closure operates on a system in which all
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distances are minimal except those that involve a particular projection xi, xj .
Thus, the task is to update all other projections with the new information
available on xi, xj . This task, illustrated in Fig. 8.6, is performed as follows.

In the example shown, the polyhedron for x2, x4 is intersected with new in-
equalities. In order to close the system, all inequalities that are new and were
non-redundant have to be propagated to all other projections. This propa-
gation is performed in two phases. The first phase propagates information
to all projections that share one variable with the inequalities over x2, x4.
For instance, all inequalities in the projection x0, x2 are combined with the
new inequalities, yielding inequalities over x0, x4. Before these inequalities
are inserted into the projection x0, x4, the current inequalities over x0, x4 are
combined with those over x2, x4, yielding new inequalities for the symmetric
case, namely x0, x2. Analogously, the new inequalities over x2, x4 are com-
bined with xi, x2 and xi, x4 for i = 1, 3, 5, 6. At this point, all resultants that
share one variable with the projection x2, x4 are up-to-date. In terms of a
graph, all nodes (variables) that are immediate neighbours of the nodes x2

and x4 are up-to-date; the polyhedra on these edges are called distance-one
results. The second phase uses the distance-one results to update the remain-
ing projections that have no variables in common with the x2, x4-projection.
Specifically, each projection xi, xj , where i, j ∈ {0, 1, 3, 5, 6}, i �= j, is updated
by calculating the resultants of the projections xi, x2 and x2, xj in addition to
the resultants of the projections xi, x4 and x4, xj . For instance, as shown on
the right of Fig. 8.6, the projection x0, x6 is updated by first calculating the
resultants of x0, x2 and x2, x6 followed by x0, x4 and x4, x6. The projections
xi, xj are called distance-two results because, in the context of the graph in-
terpretation, these edges are two nodes away from the nodes x2 and x4 for
which closure is run. After all distance-two projections have been updated,
the TVPI system is closed.

Algorithm 7 sketches the structure of the incremental closure algorithm.
The algorithm shown assumes that the domain is not implemented as a re-
duced product between TVPI inequalities and intervals, thereby simplifying
the presentation significantly. Furthermore, a triangular matrix stored in a dy-
namically resizable array requires that each projection xi, xj be stored at the
index j(j−1)/2+i if i < j; see [112]. This implies that the indices i and j have
to be swapped whenever i > j, and the calculation of the resultants requires
extra arguments that determine which variable to eliminate. Algorithm 7 sim-
ply defines inequality sets I{i,j} for every variable set {xi, xj}. As the index
is a set, I{i,j} = I{j,i} follows. Furthermore, the sets are not a partitioning of
I since inequalities ι with var(ι) = {xi} appear in all sets I{xi,xj} with j �= i.
The correctness of this simplified algorithm is stated as follows.

Proposition 10. Suppose Inew ∈ Two is given with |var(Inew)| = 2. Let I ∈
Twocl and let I ′ = intersect(I, Inew). Then [[I ∪ Inew]] = [[I′]] and I ′ ∈ Twocl.
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Algorithm 7 Intersecting with inequalities over xj , xk and performing closure
procedure intersect(I, Inew)
1: {xj , xk} ← var(Inew)
2: I{i,j} ← {ι ∈ I | var(ι) ⊆ {xi, xj}}
3: I ′

{j,k} ← nonRedundant(I{j,k} ∪ Inew)
4: if [[I ′

{j,k}]] = ∅ then
5: return {0 ≤ −1}
6: end if
7: n ← |var(I)|
8: for i ∈ [0, n − 1] \ {j, k} do
9: I′

{j,i} ← nonRedundant(I{j,i} ∪ result(I ′
{j,k} ∪ I{k,i}))

10: I ′
{k,i} ← nonRedundant(I{k,i} ∪ result(I ′

{k,j} ∪ I{j,i}))
11: if [[I ′

{j,i}]] = ∅ ∨ [[I{k,i}′ ]] = ∅ then
12: return {0 ≤ −1}
13: end if
14: end for
15: for x ∈ [0, n − 1] \ {j, k} do
16: for y ∈ [x + 1, n − 1] \ {j, k} do
17: I ′

{x,y} ← nonRedundant(I{x,y}∪result(I ′
{x,j}∪I ′

{j,y})∪result(I ′
{x,k}∪I ′

{k,y}))
18: if [[I ′

{x,y}]] = ∅ then
19: return {0 ≤ −1}
20: end if
21: end for
22: end for
23: return {I ′

x,y | 0 ≤ x < y < n}

Proof. For convenience, let I ′
i,j = {ι ∈ I ′ | var(ι) ⊆ {xi, xj}}. Show that

[[I ∪ Inew]] = [[I ′]]. Note that, for all x, y ∈ [0, n − 1], lines 3, 9, 10, and 17
ensure that I ′{x,y} = nonRedundant(I{x,y} ∪ Ī) for 0 ≤ x < y ≤ n − 1 and
some Ī ⊆ Two. Due to line 3, I ′

{j,k} = nonRedundant(I{j,k}∪ Inew) and hence
[[I ′

{j,k}]] �P [[I{j,k}∪Inew]], and thus, by line 23, [[I ′]] �P [[I∪Inew]]. Since Ī are
resultants of inequalities from I, [[I ∪ Ī]] = [[I]] and hence [[I ∪ Inew]] �P [[I ′]],
and thus [[I ∪ Inew]] = [[I ′]].

Now show I ′ ∈ Twocl. Suppose I ′ /∈ Twocl and choose Ī ⊆ Ineq2 min-
imal with I ′ ∪ Ī ∈ Twocl. Let ι ∈ Ī. We show that ι ∈ I ′ and hence
Ī = ∅. Since I ∈ Twocl, ι ∈ result(. . . result(I ∪ Inew) . . .) and specifically
ι ∈ result(. . . result(I ∪ I ′{j,k}) . . .). Let ι = caxa + cbxb ≤ c. Note that
{a, b} �= {j, k} since otherwise ι ∈ I ′{j,k} and hence ι ∈ I ′ by line 23. Thus,
suppose a ∈ {j, k} and b /∈ {j, k}. If a = j, then line 9 requires that ι ∈ I ′{j,b}.
Since ι /∈ I{j,b} as I ∈ Twocl, it follows that ι ∈ result(I ′{j,k} ∪ I{k,b}) and
hence ι ∈ I ′. Similarly for a = k and line 10.

Now suppose {a, b}∩{j, k} = ∅ and ι ∈ I ′{a,b} as defined on line 17. Since ι /∈
I{a,b} as I∈ Twocl, either ι∈ result(I ′{a,j}∪ I ′{j,b}) or ι∈ result(I ′{a,k}∪ I ′{k,b}).
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In the first case, ι ∈ result(result(I{a,j}, I
′
{j,k}), result(I ′{k,j}, I{j,b})), and thus

ι ∈ I ′. Analogously for the second case.

Note that the algorithm above only handles inequalities with exactly two
variables. Inserting inequalities over a single variable can be implemented by
a simpler algorithm that merely updates the upper and lower bounds of a
single row or column. Adding inequalities with more than two variables is
considered in the next section.

8.2.3 Approximating General Inequalities

Figure 8.1 at the beginning of this chapter depicts the problem of adding the
inequality x+y+z ≤ 1 over three variables to the TVPI domain. The resulting
domain is necessarily an approximation, as only inequalities with at most two
variables can be represented. In general, calculating the intersection of I ∈
Two with an inequality of the form a1x1 + . . . anxn ≤ c can be approximated
by inserting the set of inequalities ajxj +akxk ≤ c−cj,k into I, where 1 ≤ j <
k ≤ n and cj,k = minExp(

∑
i∈[1,n]\{j,k} aixi, I). If the bound cj,k is infinite,

no approximation is possible. The number of inequalities that are generated
this way may be as large as

(
n
2

)
; that is, the number is quadratic in the

number of non-zero coefficients n. In practice, Core C programs rarely give
rise to inequalities with more than three variables, so the number of TVPI
inequalities needed to approximate a single inequality is not a bottleneck.

Note that the approximation of inequalities presented is not always opti-
mal. Consider the task of adding x − 2y + z ≤ 0 to the closed TVPI system
I = {x − y = 0}. Since neither x, y nor z have an upper bound or the term
x− 2y, the approximation above would fail to deduce any information. How-
ever, given the inequality x − y = 0 ∈ I, the new inequality rewritten to
x − y − y + z ≤ 0 can be approximated with −y + z ≤ 0. While a better
approximation algorithm is certainly desirable, it is not too crucial in the
context of our analysis, as inequalities with more than two variables tend to
have coefficients of 1 or −1. Furthermore, variables are usually bounded.

Thus, an efficient implementation of the strategy above to approximate an
n-dimensional inequality with TVPI inequalities hinges on an efficient linear
programming algorithm to implement minExp, which is discussed next.

8.2.4 Linear Programming in the TVPI Domain

Inferring the minimum of a linear expression in the context of a TVPI system
can be solved straightforwardly using general linear programming techniques
such as Danzig’s simplex method. Interestingly, a linear programming algo-
rithm that exploits the special structure of a TVPI system has only been
found recently [186]. This algorithm runs in O(m3n2 log B), where m is the
number of inequalities, n the number of variables, and B the upper bound on
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the constants. Observe that, for a closed TVPI system, Prop. 9 states that the
algorithm may be run on just those variables that appear in the expression
to be minimised. While this also reduces the number of inequalities m that
the algorithm runs on, a closed system contains many redundant inequalities
that increase m unnecessarily.

In the context of analysing programs, the minimum of an expression is
usually queried on a few variables, namely to approximate inequalities as
described in the last section or to infer bounds of pointer offsets. Hence,
rather than implementing an algorithm for arbitrary dimensions that is cubic
in the number of inequalities, we chose to implement a simple but sufficient
technique to infer bounds on expressions with up to four variables as follows.
To this end, note that the bound of a single variable is readily available and
that an expression over two variables can be bounded by using the planar
linear programming algorithm presented in the last chapter.

For expressions over more than two non-zero variables, the problem can be
decomposed into several planar linear programming problems. For instance,
the minimum of caxa+cbxb+ccxc ∈ Lin in the TVPI domain I is the minimum
of the following expressions, where xl

i denotes the lower bound of xi:

minExp(caxa + cbxb, I) + ccx
l
c

minExp(caxa + ccxc, I) + cbx
l
b

minExp(cbxb + ccxc, I) + caxl
a

Similarly, the minimum value of an expression caxa +cbxb +ccxc +cdxd ∈ Lin
is the minimum of the following expressions:

minExp(caxa + cbxb, I) + minExp(ccxc + cdxd, I)
minExp(caxa + ccxc, I) + minExp(cbxb + cdxd, I)
minExp(caxa + cdxd, I) + minExp(cbxb + ccxc, I)

With these definitions, it is possible to calculate minExp(e, I) for all
e ∈ Lin with var(e) ≤ 4 and thus to approximate inequalities with up to
six variables. While this approach might not be satisfactory in the general
case, it is sufficient for a static analysis, as more complex expressions in C
programs are always simplified by the compiler using assignments to tem-
porary variables. This simplification happens as part of the translation to
three-address code and is therefore present in the Core C code produced.

The last operation that exhibits an interesting behaviour when lifted from
planar polyhedra to TVPI polyhedra is widening, which is the topic of the
last section in this chapter.

8.2.5 Widening of TVPI Polyhedra

As pointed out in Sect. 7.2.5, widening the individual planar projections of
the TVPI domain is simpler than for general planar polyhedra, as the TVPI
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Fig. 8.7. Polyhedra over n variables that extend in fewer than n dimensions (degrees
of freedom) have several inequality sets that represent them.

domain is implemented as the product of interval bounds and TVPI inequali-
ties. For instance, Figure 8.7 shows two inequality sets that describe the same
polyhedron. While the left graph shows a non-redundant set of TVPI inequali-
ties, two of the interval bounds in the right graph are redundant. However, the
representation using bounds and TVPI inequalities is unique in that no other
set of bounds and inequalities defines the same polyhedron. As a consequence,
widening, which removes facets of a polyhedron that are unstable, reduces to
a simple set-difference operation. The details of an actual implementation of
widening are omitted at this point because Chap. 12 will present a function
that extrapolates the change between two consecutive iterates. Widening is a
special case of this function in the sense that the change between two consec-
utive iterates is extrapolated by an infinite amount.

Note that widening each planar projection results in a TVPI system that is
not closed in general. For instance, let I1 = {x ≤ y+1, y ≤ z+1, x ≤ z+1} and
I2 = {x ≤ y + 1, y ≤ z + 1, x ≤ z + 2} represent two consecutive loop iterates.
The result of I = I1∇I2 discards the inequality x ≤ z + 1, as it has changed
to x ≤ z + 2. However, result(I) = {x ≤ z + 2} /∈ I, and thus the widened
TVPI system I is not closed. In fact, result(I)∪I = I2, which hints at the fact
that closure might interfere with widening in that it re-introduces inequalities
that were widened away. Section 10.3 in the chapter on interfacing the TVPI
domain with the analysis will illustrate how widening and closure have to be
applied in order to guarantee the convergence of fixpoint calculations.

While widening is a prerequisite to ensure that a fixpoint calculation using
the TVPI domain will terminate, it may not be sufficient. Infinite chains
manifest themselves in a continuously growing number of inequalities and
infinitely increasing coefficients. While widening tackles both aspects, it is not
always sufficient to ensure that coefficients in inequalities stay tractable. The
next chapter therefore presents techniques to reduce the size of coefficients by
tightening the inequalities around the set of integral points that they enclose.
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8.3 Related Work

Using n-dimensional polyhedra as an abstract domain for program analysis
is expressive but expensive [62]. Recent proposals have been made to only
infer certain inequalities that are deemed to be important to prove a prop-
erty [153], only use a special geometric shape of polyhedron [35], impose a fixed
dependency between variables [154], or simply approximate the exponential
operations when the size of the system becomes too large [169]. In contrast,
the TVPI domain limits the precision of the inferred polyhedra up front. TVPI
polyhedra form a so-called weakly relational domain and thereby constitute
a proper sub-class of general polyhedra. Other sub-classes include difference
bounds matrices (DBMs for short) [7,127,161], the Octagon domain [128,130],
and the Octahedron domain [47]. The abstract domain of DBMs represents
inequalities of the form xi − xj ≤ cij , xi, xj ∈ X by storing cij in an n × n
matrix such that the entry at position i, j is cij . A special value∞ is stored at
this position if xi−xj is not constrained. Closure is computed with an all-pairs
Floyd-Warshall shortest-path algorithm that is O(n3) and echoes ideas in the
early work of Pratt [145]. The Octagon domain [128] represents inequalities
of the form axi + bxj ≤ c, where a, b ∈ {1, 0,−1} and xi, xj ∈ X . The key
idea of [128] is to simultaneously work with a set of positive variables x+

i and
negative variables x−

i and consider a DBM over {x+
1 , x−

1 , . . . , x+
n , x−

n }, where
n = |X |. Then xi − xj ≤ c, xi + xj ≤ c, and xi ≤ c can be encoded respec-
tively as x+

i −x+
j ≤ c, x+

i −x−
j ≤ c and x+

i −x−
i ≤ 2c. Thus a 2n× 2n square

DBM matrix is used to store this domain. The Octagon domain has been
successfully applied to verify large-scale embedded software [30, 31]. While
the matrix representation makes adding and removing variables cumbersome,
matrix elements can be simple integers or floating-point variables rather than
arbitrary-precision integers as required for the TVPI domain. In fact, the op-
erations of the Octagon abstract are so simple that they can be implemented
efficiently on high-end graphics hardware [21]. The Octagon domain was gen-
eralised into the Octahedron domain [47], allowing more than two variables
with zero or unary coefficients while maintaining a hull operation that is poly-
nomial in the number of variables. Miné has generalised DBMs [129] to a class
of domains that represent invariants of the form x− y ∈ C, where C is a non-
relational domain that represents, for example, a congruence class [86]. This
work is also formulated in terms of shortest-path closure and illustrates the
widespread applicability of the closure concept. In particular, closure has been
applied to check for satisfiability of TVPI systems. Some of these approaches
are discussed in the Related Work section of the next chapter.
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The Integral TVPI Domain

All properties that the analysis presented infers can be expressed with integral
numbers. Hence, it is possible to restrict the inferred polyhedra to the con-
tained integral points. In fact, shrinking a polyhedron around the contained
integral points is highly desirable for precision as well as for performance, as
discussed in the next section. However, ensuring that all vertices of a poly-
hedron are integral is a computationally hard task. A first step towards an
integral TVPI domain is to tighten each individual inequality ax + by ≤ c,
a, b, c ∈ Z by replacing it with the inequality (a/d)x + (b/d)y ≤ �c/d�, where
d = gcd(a, b). Note that every integral point 〈x′, y′〉 with ax′+by′ ≤ c satisfies
the tightened inequality since ax′ + by′ and (ax′ + by′)/d are integral and thus
(ax′ + by′)/d ≤ �c/d� [148]. However, tightening individual inequalities is not
enough to ensure that the vertices of the polyhedron are integral, and addi-
tional inequalities need to be added. One way to add these extra inequalities is
Gomory’s famous cutting plane method [157, Chap. 23]. This method system-
atically infers inequalities ax + by ≤ c for a given polyhedron I ∈ Two such
that [[ax + by ≤ c]] ⊆ [[I]]. The tightened inequality (a/d)x + (b/d)y ≤ �c/d�
where d = gcd(a, b) is then added to the representation of P , thereby cutting
off space of I that contains no integral points. This process is repeated until
no more inequalities ax + by ≤ c can be inferred in which �c/d� < c/d, at
which point the polyhedron is integral. The method terminates after generat-
ing a finite number of cutting planes; however, the number of cutting planes
may be exponential in the width of the polyhedron. This is illustrated by an
example presented in [157, p. 344]. Consider the rational polyhedron shown
in Fig. 9.1 that is defined by the vertices 〈0, 0〉, 〈0, 1〉, and 〈k, 1

2 〉. One step of
Gomory’s algorithm infers new inequalities such that 〈k−1, 1

2
〉 is a new vertex.

By induction, k − 1 further steps are necessary to derive the Z-polyhedron
containing only the vertices 〈0, 0〉 and 〈0, 1〉.

While all but the last planes in this example were redundant, even the num-
ber of non-redundant inequalities that need to be added to define an integral
polyhedron can be exponential in the number of inequalities that describe the
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Fig. 9.1. Calculating a new set of cutting planes will refine the rational vertex 〈k, 1
2
〉

to 〈k − 1, 1
2
〉. Thus k − 1 more steps are necessary to obtain a Z-polyhedron.

rational input polyhedron. Thus, it is not possible to implement an efficient
static analysis using Z-polyhedra as the abstract domain. For the special case
of planar polyhedra, Harvey proposed an efficient algorithm to shrink a ratio-
nal polyhedron around the contained integral points [96]. Section 9.2 presents
Harvey’s algorithm and its implementation in the context of the TVPI do-
main when it is realised as a reduced product between interval bounds and
TVPI inequalities. Not surprisingly, shrinking each planar projection is not
sufficient to obtain an integral n-dimensional TVPI system. In fact, testing
whether a TVPI polyhedron has an integral solution is NP-complete [114].
Hence, Sect. 9.3 discusses how Harvey’s algorithm can be combined with the
TVPI closure presented in the previous chapter to approximate an integral
TVPI domain. The chapter concludes with an overview of related work.

9.1 The Merit of Z-Polyhedra

This section motivates the use of Z-polyhedra in an analysis. On the one hand,
the precision of an analysis can be improved by removing non-integral state
space. On the other hand, shrinking the state space around the contained
integral points avoids excessive growth of coefficients in the inequalities that
describe the polyhedron. The following sections discuss each aspect in turn.

9.1.1 Improving Precision

Restricting the solution set of a polyhedron to integral points can improve the
precision of an analysis to the extent that certain properties can be verified
that are too coarsely approximated when using rational polyhedra. Spurious
state space that contains no integral points may be transformed by scaling
(that is, evaluating multiplication operations) to a state that contains spurious
integral points. For instance, consider Fig. 9.2, which shows the state space
after executing the first assignment in the following C function:
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Fig. 9.2. The state space after executing j=k/4, where j and k are integers. The
crosses mark possible variable valuations. The dashed lines denote the admissible
solutions for j after intersecting the polyhedron with k = 7.

���� f(������	� ��
 k) {
��
 i,j;
j = k/4;
i = j*2;
�� (k==7) { assert(i<3); }

};

Integer division in C rounds towards zero and, when assuming that
0 ≤ k ≤ 232 − 1, the smallest polyhedron that contains all solutions of the
division is [[{0 ≤ k ≤ 232 − 1, 4j ≤ k ≤ 4j + 3}]], which is shown in grey. The
multiplication i=j*2 adds i = 2j to the description, yielding 2i ≤ k ≤ 2i + 3
as the relationship between k and i. The assertion in the branch of the con-
ditional therefore does not seem to hold since with k = 7 it only follows that
2i ≤ 7 ≤ 2i + 3; i.e., i ∈ [2 . . . 3.5]. However, when i = 3, then j = 1.5, which
is not a possible state in the actual program. In fact, the largest value of j for
k = 7 is 1, and hence the maximal value for i is 2. The necessary precision to
verify the assertion can be attained by shrinking the polyhedron around the
containing integral points after the intersection with k = 7. While the possible
rational values for j are [1, 1.75], the only integral point in this polyhedron is
j = 1, k = 7, which indeed implies i = 2 and thus verifies the assertion.

9.1.2 Limiting the Growth of Coefficients

While improved precision is important in some circumstances, a more pressing
reason to perform tightening around the integral grid is the growth of coeffi-
cients that can occur otherwise. Specifically, repeated application of the join
operator during a fixpoint calculation can lead to coefficients that are exces-
sively large [169]. In principle, widening can be applied to remove inequalities
with excessive coefficients. In practice, coefficients may grow drastically before
widening is applied. Thus, analyses that do not restrict the size of coefficients
may grind to a halt due to expensive arithmetic on very large numbers. Even
if widening is applied regularly, the question of whether an inequality con-
tains an excessively large coefficient and should therefore be discarded has
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no straightforward answer. For instance, wrapping the variable x to an un-
signed 32-bit integer in the polyhedron [[{x = y − 1, 0 ≤ y ≤ 1}]] yields
{x+(232−1)y = 232−1, 0 ≤ y ≤ 1}, which is the most precise set of inequalities
that contains the two integral points, and removing any of these inequalities
would discard valuable information. In contrast, Chap. 11 presents an exam-
ple from string buffer analysis where coefficients with four decimal digits can
be removed without affecting the number of warnings the analysis emits. A
more principled way to prevent coefficients from growing excessively is, again,
to shrink the polyhedron around its integral points. For instance, adding the
inequality x ≤ 7 to the above system {x + (232 − 1)y = 232 − 1, 0 ≤ y ≤ 1}
results in a polyhedron that only contains the integral point 〈x, y〉 = 〈0, 1〉.
Tightening the rational polyhedron around this integral point results in the
inequality set {0 ≤ x ≤ 0, 1 ≤ y ≤ 1}, which contains none of the large
coefficients of the rational system. In general, the coefficients of inequalities
in a Z-polyhedron are bound by the admissible range of the variables in the
inequality. For instance, the wrapped system above constitutes an inequality
set that spans the whole 32-bit range of x and whose coefficients are bound by
232. In fact, this system depicts the worst-case scenario, as any other system of
inequalities that contains the values 0 and 232−1 for x has the same or smaller
coefficients for x. Thus, tightening combined with wrapping guarantees upper
bounds on the coefficient sizes.

The next section details this tightening process and its implications.

9.2 Harvey’s Integral Hull Algorithm

The integral TVPI domain used in our analysis is based on Harvey’s inte-
gral hull algorithm, which tightens a planar polyhedron around the contained
integral points. A general Z-polyhedron is characterised by the fact that all
vertices have coordinates in Z|X |. Thus, testing if a set of inequalities de-
fines an integral polyhedron by calculating the vertices is exponential, as the
number of vertices grows exponentially with the number of inequalities. In
contrast, a planar polyhedron is integral if all inequalities that are adjacent
with respect to their angle intersect in an integral point. Thus, testing if a
planar polyhedron is integral is a linear-time operation. In fact, the idea of
the integral hull algorithm is to calculate cutting planes between adjacent in-
equalities. The number of new cutting planes is bounded logarithmically by
the size of the (coefficients of the) polyhedron; hence, Harvey’s algorithm runs
in O(n log A), where A represents the maximum coefficient in the inequality
set. Calculating cutting planes between two adjacent inequalities is presented
next. Section 9.2.2 describes the integral hull algorithm for the reduced prod-
uct between intervals and TVPI inequalities with two non-zero coefficients,
thereby yielding a simpler implementation than Harvey’s original proposal.
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Fig. 9.3. Given two neighbouring inequalities, Harvey’s algorithm calculates so-
called cuts that tighten these inequalities around the contained integral points.

9.2.1 Calculating Cuts between Two Inequalities

The building block of Harvey’s algorithm calculates cuts between two adjacent
inequalities that have a rational intersection point. These cuts correspond to
Gomory’s cutting planes, except that they are always non-redundant. Suppose
the following inequalities are adjacent in the input polyhedron:

ι1 ≡ 3x + y ≤ 25
ι2 ≡ 3x + 5y ≤ 50

Figure 9.3 shows that the intersection point of these inequalities is not integral.
In order to calculate the cuts 2x + y ≤ 18 and x + y ≤ 12 shown, the initial
inequalities are mapped to a different coordinate system by applying a linear
transformation T ∈ Z2×2 to the coefficients such that det(T ) ∈ {1,−1} and

(
3 1
3 5

)
T =

(
t u
1 0

)
;

that is, the inequality ι1 ≡ 3x + y ≤ 25 is mapped to ι′1 ≡ tx + uy ≤ 25 and
ι2 ≡ 3x + 5y ≤ 50 to ι′2 ≡ x ≤ 50. In addition, the transformation matrix is
unimodular (that is, det(T ) ∈ {1,−1}), which implies that the transformation
maps every integral point in the original system to an integral point in the
new coordinate system [67]. In the example above, a suitable matrix is
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ι′2 = x ≤ 50.

T =
(
−3 −5

2 −3

)
.

Applying this transformation matrix to the inequality ι1 yields ι′1 ≡ −7x+
12y ≤ 25, which is shown together with ι′2 in Fig. 9.4. As before, ι′1 has a
non-integral intersection with ι′2 ≡ x ≤ 50. However, observe that the first
feasible integral point that lies on the boundary of ι′1 is at 〈41, 26〉, such
that the problem of calculating cuts reduces to finding integral points with
41 ≤ x ≤ 50. The idea is to consider the slope of ι′1 as a fraction 12/7 and to
calculate approximations to 12/7 using fractions made up of smaller numbers.
These approximations provide potential slopes for a cut that originates in
〈41, 26〉.

To this end, observe that every rational number can be represented as a
finite continued fraction that takes on the following form:

a1 +
1

a2 + 1
a3+··· 1

an

The coefficients ai can be inferred by observing the intermediate results of
Euclid’s greatest common divisor algorithm when applied to 12 and 7 [67]:

12 = 1× 7 + 5
7 = 1× 5 + 2
5 = 2× 2 + 1
2 = 2× 1 + 0
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The continued fraction representation of 12/7 can be derived by dividing
the equalities by 7, 5, and 2, respectively, and by substituting the reciprocal
right-hand side of each equation into the previous equality. The coefficients
are thus a1 = 1, a2 = 1, a3 = 2, a4 = 2. Approximations to 12/7 can now be
derived by calculating the continued fraction of a prefix of these coefficients.
Rather than operating on rational numbers, the following recurrence equations
provide a way to calculate these approximations using integral numbers only:

A0 = 1 A1 = a1 Am = amAm−1 + Am−2

B0 = 0 B1 = 1 Bm = amBm−1 + Bm−2

The following table shows the values of Ai and Bi. For all coefficients
ai > 1, we calculate the values of 1, . . . ai − 1 first, as they provide additional
slopes for potential cuts. The index i for this case is written i.j, where j =
1, . . . ai.

# 1 2 3 4 5 6 7
i 0 1 2 3.1 3.2 4.1 4.2
Ai 1 1 2 3 5 7 12
Bi 0 1 1 2 3 4 7

These seven slopes are shown in Fig. 9.4 as a displacement to the integral
point 〈41, 26〉. Note that slopes with odd indices i are not feasible with respect
to ι′1 and can therefore be discarded as an endpoint for a cut. In particular,
the coefficients for the first cut are taken from the largest even index i (or sub-
index i.j with i even) that yields a point that is still satisfied by ι′2 ≡ x ≤ 50.
The first cut in the transformed space is therefore −4x + 7y ≤ 18 using the
sixth fraction. The next cut originates in the endpoint of the first cut, which
is 〈48, 30〉. Calculating the next cut is a matter of approximating the slope
7/4 of the first cut. Since the continued fraction coefficients of 7/4 form a
suffix of those of 12/7, we can reuse the table above to find a suitable slope.
The slope 〈2, 1〉 gives a displacement that reaches 〈50, 31〉, which lies on the
boundary of ι′2. Thus the corresponding inequality −x + 2y ≤ 12 is the final
cut with respect to the two input inequalities. The two cuts are translated to
the original coordinate system by multiplying the coefficients with

T−1 =
(

3 5
2 3

)
,

yielding 2x + y ≤ 18 for the first cut and x + y ≤ 12 for the second, as
shown in Fig. 9.3. Given that Euclid’s algorithm requires log(A) steps, where
A is the larger of the two input coefficients, and the fact that the fraction
in each step may give rise to at most one cut, no more than log(A) new
inequalities are generated. However, some of these new cuts may be redundant
with respect to adjacent inequalities of the rational polyhedron. The next
section discusses the challenges of implementing an algorithm that combines
tightening of two inequalities with redundancy removal and thereby provides
a practical implementation of Harvey’s algorithm in O(n log A) time if all the
new inequalities are sorted. Here n is the sum of new and existing inequalities.
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Fig. 9.5. Determining the bounds with which to calculate integral cuts.

9.2.2 Applying the Integer Hull in the Reduced Product Domain

Based on the method of calculating cuts between two inequalities, Harvey
suggested an incremental algorithm that tightens a rational input polyhedron
by adding its inequalities one by one to an initially empty tree of inequalities
that constitutes the output. The complexity of O(n log A) is based on a level-
linked finger tree [124] that is implemented in a circular fashion. In this section,
we present a way to calculate the integral hull in O(n log A) time, which is
likely to be faster for small n that occur in program analysis and more in tune
with the reduced product representation of the TVPI domain where interval
bounds are represented separately from the relational information and the
latter is stored as an ordered, non-redundant array of inequalities.

Calculating the integral hull of a polyhedron has to be performed when-
ever new inequalities are added through the meet operation since this may
create non-integral intersection points. On the one hand, any redundant in-
equality that arises when adding new inequalities needs to be removed, as cuts
must be calculated on pairs of inequalities that are themselves non-redundant.
On the other hand, any new cut may make other inequalities redundant such
that the redundant inequalities must be removed while calculating cuts. Com-
bining both algorithms into one is difficult, as the redundancy removal al-
gorithm in Sect. 7.2.2 on p. 132 reduces the number of inequalities until a
fixpoint is reached, while calculating cuts creates new inequalities. Thus, we
present a strategy that separates these concerns by exploiting the fact that the
TVPI domain is implemented as a reduced product between TVPI inequal-
ities and interval bounds. In particular, by observing that interval bounds
are tightened explicitly during redundancy removal, as shown in Fig. 8.5 on
p. 156, we propose to tighten the interval bounds further, namely to the values
that they will take on in the final Z-polyhedron. Given these tightened inter-
val bounds, cuts can be calculated separately within each quadrant without
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Algorithm 8 Test for a feasible integral point on the upper bounds.
procedure hasZPoint4th(ι1, ι2, xu, yu) where xu, yu ∈ Z ∪ {∞} and ι1, ι2 ∈ Ineq

with 3
2
π < ι1 < 2π ∧ ι1�ι2 ≤ 2π ∧ θ(ι2) �= 0 ∧ θ(ι2) �= π

2

1: a1x + b1y ≤ c1 ← ι1
2: a2x + b2y ≤ c2 ← ι2
3: if xu = ∞ then
4: return true
5: end if
6: {〈 , lower〉} ← [[{a1x + b1y = c1, x = xu}]]
7: {〈 , upper〉} ← [[{a2x + b2y = c2, x = xu}]]
8: if yu < ∞∧ upper > yu then
9: if lower ≤ yu then

10: return true
11: end if
12: {〈upper , 〉} ← [[{a1x + b1y = c1, y = yu}]]
13: {〈lower , 〉} ← [[{a2x + b2y = c2, y = yu}]]
14: end if
15: return �lower� ≤ �upper�

requiring a fixpoint computation to remove inequalities that become redun-
dant with respect to the calculated cuts.

As a first step, we describe how to tighten interval bounds to the bounds of
the final Z-polyhedron. Since a Z-polyhedron is characterised by the fact that
all vertices are integral, it follows that a Z-polyhedron has at least one feasible
integral point on each bound of its bounding box. Thus, in order to find this
bounding box, the intervals of the rational polyhedron must be tightened until
at least one integral point lies on each bound. Suppose that the bounds are
rationally tightened such that the intersection of two adjacent bounds defines
a feasible (but possibly rational) point corresponding to graphs 2–4 in Fig. 8.5.
Rounding the bounds to the nearest feasible integral values may lead to one
of the situations depicted in Fig. 9.5.

The interval bounds need no tightening if a point lies on them that is
integral and feasible, such as in the second graph. Algorithm 8 implements
this test for pairs of inequalities ι1, ι2 where the normal vector of ι1 points
towards the fourth quadrant, as is the case in Fig. 9.5. Only the upper interval
bounds, namely xu and yu, are relevant for this test. The algorithm returns
false if the feasible section of a bound contains no integral point. In particular,
lines 6 and 7 calculate the lower and upper y-values of the intersection point of
the inequalities with the x-bound xu, which corresponds to the first graph in
Fig. 9.5. Line 8 tests if these intersection points are feasible with respect to the
upper bound on y, namely yu. If these two bounds lie on either side of yu, then
an integral point has been found since yu ∈ Z (lines 9–11 and graph two in the
figure). Otherwise, the upper and lower x-values of the intersection between
the inequalities and yu are calculated (lines 12–13 and graph three in the
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Fig. 9.6. Deriving new bounds by calculating intersection points between cuts.

figure). If rounding these values towards each other results in a non-empty
interval, a feasible point on one of the bounds has been found and line 15
returns true. Two special cases may occur during the test. Firstly, ι1�ι2 = π;
that is, the inequalities define an equality. In this case, the polyhedron may
have no upper bounds and is thus automatically a valid Z-polyhedron and lines
3–5 return prematurely. Secondly, if the inequalities ι1 and ι2 lie in adjacent
quadrants (graph one in Fig. 8.5 on p. 156), yu may be infinite and line 8
ensures that calculating the intersection with yu in lines 9–13 is skipped.

Since Alg. 8 only tests whether an integral point exists on the upper x-
bound, three more variants of this test are necessary for the other bounds. If
these tests return true, shrinking the polyhedron around the contained inte-
gral points will not affect the corresponding bound. If false is returned, the
corresponding bound must be tightened until it contains a feasible integral
point. In order to find such an integral point, we calculate a sequence of cuts
c0, c1, . . . from the two inequalities ι1 and ι2 as follows. Set c0 = ι1 unless
ι1�ι2 = π, in which case c0 is set to the cut between ι1 and the next bound.
(In the example, this is the upper x-bound such that the cut is calculated
with respect to 1x + 0y ≤ xu). Let ci denote the cut between the inequalities
ci−1 and ι2. Suppose there are n such cuts such that c0, . . . cn, cn+1 denotes
a sequence of inequalities with integral intersection points where cn+1 = ι2.
Furthermore, let i denote the smallest index such that class(ci) �= class(ι1);
that is, the cut ci lies in the next quadrant. Then the intersection between
ci−1andci is an integral vertex that represents the largest extent of the polyhe-
dron towards that direction. Analogously, let j denote the largest index such
that class(cj) �= class(ι2), and use the intersection of cj and cj+1 to refine the
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Algorithm 9 Calculating all cuts between two non-redundant bounds.
procedure tightenFirstQuadrant(I, xu, yu), I sorted, xu, yu ∈ Z ∪ {∞}
1: if xu < ∞ then
2: I ← 〈1x + 0y ≤ xu〉 · I
3: end if
4: if yu < ∞ then
5: I ← I · 〈0x + 1y ≤ yu〉
6: end if
7: O ← ∅
8: while |I| > 0 do
9: if |O| = 0 then

10: 〈ι0, . . . ιn〉 ← I
11: I ← 〈ι1, . . . ιn〉
12: O ← 〈ι0〉
13: else
14: 〈o1, . . . om〉 ← O
15: 〈ι1, . . . ιn〉 ← I
16: if |I| > 1 ∧ {om, ι2} � ι1 then
17: O ← 〈o1, . . . om−1〉
18: I ← 〈om, ι2, . . . ιn〉
19: else if intersect(om, ι1) ∈ Z2 then
20: O ← 〈o1, . . . om, ι1〉
21: I ← 〈ι2, . . . ιn〉
22: else
23: O ← 〈o1, . . . om−1〉
24: I ← 〈om, calculateCut(om, ι1), ι1, . . . ιn〉
25: end if
26: end if
27: end while
28: return O

next bound. For example, consider Fig. 9.6, where ι1 = c0 and ι2 = c5 define
the first and the last cuts. Here, i = 2 and j = 3 such that the intersection
point between c1 and c2 defines the upper x-bound and similarly c3 and c4

define the upper y-bound. After tightening the bounds, all cuts are discarded
and the redundancy removal algorithm continues, possibly identifying ι1 or ι2
as redundant, in which case the bounds might need tightening again.

By applying the procedure above for all quadrants of the planar space,
the redundancy removal algorithm will infer a polyhedron in which the
bounds coincide with the bounds of the corresponding Z-polyhedron. With
cuts being calculated on-the-fly rather than being inserted into the sequence
of inequalities, there is no need to alter the fixpoint calculation. The in-
tegral bounds can now serve to tighten each quadrant of the polyhedron
separately, as implemented by Alg. 9 for inequalities I = {ι1, . . . ιn} with
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Fig. 9.7. Removing inequalities that were made redundant by a new cut.

0 < θ(ι1) < . . . < θ(ιn) < π
2
. The first three lines prepend the upper x bound

as the inequality to I (using a dot to denote concatenation), thereby ensuring
that the sequence begins with a non-redundant inequality that is known to
be part of the output Z-polyhedron. Analogously, lines 4–6 append the upper
y-bound. Note that if a bound is infinite, the nearest inequality is in both
cases a non-redundant ray that is satisfiable by an integral point and must
therefore be part of the output Z-polyhedron. While lines 1–6 are specific
to the first quadrant, the code in lines 7–28 is applicable to all quadrants.
The loop shown examines the polyhedron described by I and calculates its
Z-polyhedron in form of the initially empty sequence O. Specifically, lines
9–12 ensure that O contains at least the first element of I, which is known
to be in the output Z-polyhedron by the previous argument. The following
lines ensure that O only contains inequalities that are non-redundant and that
intersect in an integral point. Non-redundancy of ι1 is ensured by the test in
line 16, which holds if ι1 is the last inequality in I or if it is not entailed by
its neighbouring inequalities. Furthermore, integrality is ensured by the test
in line 19, in which case lines 20–21 move the head ι1 of I to the tail of O. If
the intersection point is not integral, lines 23–24 calculate a cut that has an
integral intersection with om. However, the new cut may make om redundant,
which is illustrated in the first graph of Fig. 9.7. Since om was appended to O,
it is non-redundant with respect to om−1 and ι1 and there exists an integral
point p = intersect(om−1, om). It follows that om can only be redundant if
p = intersect(om, c). In this case, the current om becomes ι1 in the next loop
iteration and is removed by lines 16–18. The loop iteration thereafter will find
that om−1 and the cut c (now the new ι1) intersect in the same integral point
p and therefore append the cut to O. Thus, no more than one element of O
is ever taken out of O. On the contrary, inserting a new cut c in line 24 may
render several of the following inequalities ι1, ι2, . . . redundant, as shown in
the second graph of Fig. 9.7. These are consecutively removed by lines 16–18.
Since the number of possible cuts between two inequalities is bounded and
the three other branches of the loop (lines 10–12, 17–18, and 20–21) reduce
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the length of I, the loop will terminate eventually. In particular, since each
element in O is put back into I at most once, the algorithm is linear in the
size of the output set O.

With respect to assessing the complexity of the tightening methods above,
observe that the linear redundancy removal is augmented with the calculation
of cuts between interval bounds and the adjacent inequalities. Harvey observes
that no more than O(log A) cuts can exist between any two inequalities whose
coefficients are bound by A. Furthermore, even if inequalities that are adja-
cent to the bounds become redundant and each rational input inequality is
removed, the whole redundancy removal will still terminate in O(n log A).
Similarly, calculating cuts in each quadrant terminates after creating at most
O(log A) cuts between each pair of adjacent inequalities, giving an overall run-
ning time of O(n log A). Note that Harvey’s algorithm requires only O(n log A)
steps even if the input inequalities are not sorted by angle. However, Alg. 9
can be implemented using a dynamically growing array for the output O.
The simpler data structure is likely to make up for the requirement of sorting
the input inequalities. This is particularly true when using the TVPI domain
for the analysis presented, as the occurring planar polyhedra are very small,
such that the overall running time is dominated by factors such as the cost of
arithmetic on multiple precision integers rather than the complexity class.

The next section presents a closure algorithm that builds on the integral
hull and the redundancy removal algorithm.

9.3 Planar Z-Polyhedra and Closure

Given an efficient algorithm that shrinks a given planar polyhedron around
the integral points that it contains, we now consider the problem of closing a
system of planar integral polyhedra. Nelson originally proposed the calculation
of the closure of a TVPI system as a way to check satisfiability [138]. However,
checking if a TVPI system has an integral solution is NP-complete [114].
Indeed, the closure algorithm presented in the last chapter is incomplete when
combined with the planar integral hull algorithm. In this section, we shall
explore how this fact manifests itself in practice.

9.3.1 Possible Implementations of a Z-TVPI Domain

The complexity of the problem could be circumvented by implementing a
rational TVPI domain and merely tightening planar projections whenever
the value of a variable is queried. However, this approach does not prevent
the excessive growth of coefficients and does not fully exploit the precision
improvement due to tightening. The latter is illustrated by Fig. 9.8, which
depicts the closure of a TVPI system containing inequalities over x, z and
z, y. Here, rational inequalities are shown as solid lines, whereas the contained



178 9 The Integral TVPI Domain

3x+z
25

3x+5z 46

x+5z 40

y-6z 42

2y-5z 39

5y
-4

z
48

18x+
y

192

15x+2y
164

12x+5y
148

12x+25y 424

4x+25y 400

10

z

x

1

2

5

9

1 2 5 8

z

9

-5

-1

y1 2 5 8
1

y

x

1

2

5

10

1 2 5

-5

-1

-2

-2

15

Fig. 9.8. Closing a system over x, z and y, z to yield x, y. Shrinking the initial
system around the integral grid removes two integral points in the x, y system.

integral polyhedra are shown as the grey area. Calculating the resultants of the
inequalities in the two graphs on the left yields five non-redundant inequalities,
shown in the x, y projection. The dashed lines in the left two graphs denote the
cuts that define the integral polyhedra in the x, z and z, y projections. Closing
the system using these cuts results in the inequalities indicated by the dashed
line in the x, y projection. Note that the two integral points 〈4, 15〉 and 〈6, 14〉
are no longer part of the feasible state space, which shows that tightening every
planar projection leads to more precise relationships between other variables
of the system. However, the x, y resultants calculated from the integral x, z
and z, y cuts do not define a Z-polyhedron, and tightening these resultants
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around the integral grid is necessary, which results in the grey polyhedron. The
example shows that tightening each individual projection around the integral
grid is more precise than inferring the best integral solution in a rational
TVPI polyhedron. Hence, both growth of coefficients and precision demand
that each projection be tightened around the contained integral points.

9.3.2 Tightening Bounds across Projections

In order to adapt the incremental closure algorithm to use Harvey’s tighten-
ing algorithm, observe that closure adds a set of inequalities to a projection,
removes redundant inequalities, and uses the non-redundant subset of the
new inequalities to close the TVPI system. When performing integral tight-
ening after running the redundancy removal algorithm, the set of new, non-
redundant inequalities, is not a subset of the new inequalities as tightening
may have added cuts that are necessary to describe the integral polyhedron.
This behaviour requires that the closure algorithm store inequalities on the
heap, which is less efficient than stack-allocated arrays, which are sufficient
for the rational closure. Repeated allocation is avoided in our implementation
by using two large heap-allocated arrays, one for all distance-one resultants
and one for distance-two resultants.

Except for calculating the cuts, performing closure with tightening ex-
hibits the same complexity as the rational closure. However, an integral clo-
sure algorithm would provide a way to test for integral satisfiability, which
in turn is NP-complete. In fact, performing the closure with tightening does
not generally lead to a closed system, and the resulting system might not
be integral. For instance, consider the TVPI system over the three variables
x, y, z shown in Fig. 9.9. Suppose the initial system consists of {x = 2z} and
that the inequalities 2x+3y ≤ 27,−2x+3y ≤ 3,−2x−3y ≤ −15, 2x−3y ≤ 9
are then added as indicated by the solid lines in the upper left system. No
integral tightening is necessary, as all intersection points of the inequalities
are integral. Closing the system calculates the resultants of these inequali-
ties and the empty y, z projection before combining the x, y projection with
{x = 2z} = {x − 2z ≤ 0,−x + 2z ≤ 0}, which effectively scales the
wider extent of the rhombus by one-half. During redundancy removal, the
interval bounds of z are tightened to 2 ≤ z ≤ 4. Now the scaled rhom-
bus 4z + 3y ≤ 27,−4z + 3y ≤ 3,−4z − 3y ≤ −15, 4z − 3y ≤ 9, de-
picted by the solid lines, has non-integral intersection points with the bounds
of z. Thus, the inequalities are tightened around the integral grid, yielding
2z + y ≤ 11,−2z + y ≤ −1,−2z − y ≤ −7, 2z − y ≤ 5, as indicated by
the dashed lines. In order to ensure that the interval bounds are maximally
tight, all projections are checked for inequalities that fulfil cases three and
four of Fig. 8.5. In the example, the x, z projection thereby tightens the in-
terval of x to 4 ≤ x ≤ 8. The incremental closure stops at this point. Since
the bound on z was updated after the x, y projection was tightened, it now



180 9 The Integral TVPI Domain

1

2

1 2 5

y

x9

5

1

2

1 2 5

z

x9

5

1

2

1 2 5

z

y9

5

y

z

x

-2x+3y 3 2x+3y 27

-2x-3y -15 2x-3y 9

x=2z

-4z+3y 3 4z+3y 27

-4z-3y -15 4z-3y 9

Fig. 9.9. Tightening inequalities around their integral grid can affect interval
bounds, which requires a new tightening step in previously visited projections.

contains non-integral intersection points. The dashed rhombus shown can be
obtained either by tightening the existing inequalities to the integral grid or
by calculating new resultants from the rhombus in the z, y projection and the
line segment in the z, y projection. In order to ensure that a TVPI system is
closed, closure and tightening have to be applied repeatedly until a fixpoint is
reached. To ensure efficiency, our implementation stops with the state space
shown in grey and thereby admits non-integral intersection points with the
interval bounds. This implies that vertex-based algorithms such as the planar
convex hull may operate on non-integral vertices and may thus create inequal-
ities that intersect in non-integral points. For instance, the join of the integer
polyhedron in Fig. 3.6 on p. 60, after being intersected with integral interval
bounds, creates inequalities that intersect in non-integral points. These ra-
tional intersection points are only removed if new inequalities are added and
integrality of the vertices is tested again.

9.3.3 Discussion and Implementation

Note that, rather unexpectedly, repeated application of integral closure does
not constitute a decision procedure for integral TVPI satisfiability. Consider
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Fig. 9.10. Allowing interval bounds to tighten after calculating the integral hull
can lead to intersection points outside the original polyhedron.

the system comprised of the inequalities 0 ≤ 4y−7z ≤ 1 for the y, z projection
and −6 ≤ 4x − 7z ≤ −7 for the x, z projection. Closing this TVPI system
adds 4x − 4y ≤ −7,−4x + 4y ≤ −5 to the x, y projection. The latter can be
tightened without losing integral solutions to x − y ≤ �−7

4
�,−x + y ≤ �−5

4
�,

which is equivalent to x− y = −2. The resulting system is in fact closed, and
all projections are integral. This is peculiar since the TVPI system is actually
unsatisfiable in Z, which becomes apparent when adding the inequality z ≥ 1:
applying closure will result in a non-integral intersection between the z-bound
and alternately the y, z- and the x, z projections without ever stabilizing.

Another consequence of bounds being tightened after a projection has
been shrunk around the integral grid is that inequalities might become redun-
dant. Suppose the integral polyhedron in the left graph of Fig. 9.10 has just
been tightened around the integral grid. If tightening in a different projection
reduces the upper bound on x to x ≤ 6, the polyhedron will contain two
redundant inequalities, ι0 and ι3, as shown in the right graph. Applying the
convex hull algorithm to this system of inequalities will calculate an intersec-
tion point between the upper bound on y and the boundary of ι0, as these
are angle-wise adjacent. However, the resulting point lies outside the polyhe-
dron, and the convex hull algorithm calculates a result that is incorrect. Thus,
inequalities that are redundant due to tightened bounds have to be removed
before applying the convex hull or other planar algorithms that require a non-
redundant input system. However, note that these excess inequalities can be
removed on-the-fly by merely using case two of the tests in Fig. 8.4 on p. 155,
rather than by applying the full redundancy removal algorithm.

Working on non-closed TVPI systems implies that the analysis is not as
precise as possible. Worse, since the closure calculation has to be stopped
at some point, the specific implementation of the TVPI domain determines
the precision of the analysis and thus the number of warnings the analysis
infers. While this is an argument against integer tightening, observe that the
integral TVPI domain is always more precise than its rational counterpart.
Furthermore, since coefficients in the inequalities of a rational TVPI system
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can grow excessively, inequalities have to be removed in order to ensure scal-
ability, which inevitably leads to a non-closed system. This is critical, as the
removed inequality might be reintroduced due to a later closure step. Tight-
ening the planar polyhedron ensures that the coefficients in the inequalities
remain small so that the removal of inequalities with large coefficients is un-
necessary. Hence, implementing the TVPI domain over planar Z-polyhedra
seems to be the only way to implement the rational TVPI domain efficiently.

Another, more critical aspect of working with non-closed TVPI systems is
that fixpoint computations might be jeopardised. Suppose a reference TVPI
system is stored at the head of a loop. Propagating a copy of this system
around the loop so that operations modify the domain in such a way that it
contains inequalities whose resultants are not explicitly expressed may make
the entailment check fail, even if the propagated state defines a smaller state
than the state that the reference system describes. This situation is unlikely
to arise, as the reference system will be created by evaluating the very same
operations in the loop body. However, at the time of writing, we have neither
a proof that no infinite chain can arise nor an example that exhibits an infinite
chain. Note, though, that Prop. 6 shows that it is not necessary to close the
reference system stored at the head of a loop.

We conclude this chapter by reviewing work on rational and integral sat-
isfiability of the TVPI domain.

9.4 Related Work

Inequalities with at most two variables have given rise to much research in
recent decades, not least due to the fact that general network-flow problems
can be expressed using a TVPI system. Integer TVPI systems describe a
special class of flow problems where flows consist of discrete units.

The closure operation presented in Sect. 8.2 stems from an idea of Nelson
to check for satisfiability of a rational TVPI system [138]. It turns out that
more efficient methods exist for this task [102]. However, Shostak used closure
algorithms to check for satisfiability of integer TVPI problems [164], although
his procedure is not guaranteed to either terminate or detect satisfiability. In
the context of weaker TVPI classes, Jaffar et al. [106] show that satisfiabil-
ity of two variables per inequality constraints with unit coefficients can be
solved in polynomial time and that this domain supports efficient entailment
checking and projection. More recently, Harvey and Stuckey [97] have shown
how to reformulate this solver to formally argue completeness, which gave
rise to the planar integer hull algorithm [96]. Su and Wagner [177] present an
algorithm for calculating the least integer solution of a system of two vari-
able inequalities. They claim that their algorithm is polynomial; however, it
turns out that solving integer two variable per inequality constraints is NP-
complete [114]. However, checking integral satisfiability of a TVPI system is
polynomial if all inequalities are monotone [101] – that is, if all inequalities
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have the form ax− by ≤ c, where a, b ∈ N. A practical implementation of the
integer satisfiability for general polyhedra is the Omega test [148], an exten-
sion of Fourier-Motzkin variable elimination that is complete over the integers
but that might not terminate in general. Other classic integer decision pro-
cedures include the SUP-INF algorithm [163] and Cooper’s algorithm [53].
These techniques are widely applied in verification but do not provide the
operations necessary for domains used in abstract interpretation.



10

Interfacing Analysis and Numeric Domain

The principles of program analysis are often explained in the context of
analysing toy languages that only require the standard lattice operations and
possibly a widening operator. This chapter details additional operations and
implementation techniques for the TVPI domain that are required to deal
with advanced techniques such as populating the map of fields on demand
and analysing programs with many variables and constants. In terms of ef-
ficiency, Section 10.1 comments on how to minimise the number of variables
in a domain and, in particular, how to minimise the number of variables in
the arguments to the quadratic TVPI domain operations. Another key prob-
lem that needs to be solved in any polyhedral domain is the addition of new
variables to the domain. While this task is not difficult in itself, Sect. 10.2
introduces the concept of typed domain variables, which is essential in terms
of precision when adding new domain variables within a loop. Section 10.3
concludes with a discussion on how the analysis has to apply widening in
order to ensure that fixpoint computations terminate.

10.1 Separating Interval from Relational Information

The domain of general polyhedra has not yet found its way into large-scale
program analysis due to its poor scalability. The TVPI domain promises
strongly polynomial performance; however, even resource consumption that
is quadratic in the number of variables is prohibitive, as a typical program
may have a few hundred live variables at a given program point. Thus, for any
real-world program, it is important to reduce the number of variables in the
TVPI domain. An important observation is that the way the analysis inter-
prets a program leads to many constant domain variables. For instance, most
pointers in C have no offset, such that the variable representing the pointer
offset is constant zero. Thus, the number of variables in the TVPI domain can
be reduced by storing constant-valued domain variables separately.
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Fig. 10.1. Storing the information on domain variables xi as a set of ranges ri and
a TVPI domain containing relational information on the variables pi.

To this end, note that performing updates on the triangular matrix of
the TVPI domain permutes the rows. If domain variables are mere indices
into the triangular matrix, then variables in the analysis must be renamed,
which amounts to modifying all data structures representing fields of mem-
ory regions, heap sizes, etc., which in turn is impractical. Hence, the domain
keeps a permutation map between abstract variables X and so-called domain
variables that represent indices into the triangular matrix. Figure 10.1 shows
this permutation map for a domain containing 13 variables. As a side effect
of the permutation map, it is straightforward to map some of the abstract
variables to a range ri as is done for x0, . . . x2, x5, and x8. A range is simply
an interval but is called a range to distinguish it from the intervals stored as
part of the TVPI domain. Having both ranges and TVPI variables renders
operations that take two domains as their argument more complicated. For
instance, when checking the entailment N1 �N N2, it is necessary to promote
any interval in N1 to the TVPI domain if this variable is stored in the TVPI
domain in N2. On the contrary, if xi is stored in the TVPI domain in N1
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but as a range in N2, then entailment can be checked by comparing the two
intervals. In the context of the join, a variable that is stored as a range in
both arguments is promoted to a TVPI variable since the convex hull opera-
tion may infer a linear relationship between the arguments. The downside of
this opportunistic promotion strategy is that applying domain operations may
promote ranges into the TVPI domain even though they remain representable
as ranges. Thus, after certain operations such as the join, an operation is run
that tries to demote variables – that is, to remove variables from the TVPI
domain that can be represented as ranges. A variable pi can be represented as
a range if its interval is a constant or all projections involving pi are empty.

Besides improving performance by storing fewer variables in the TVPI
domain, it is important to reduce the overall number of variables that are
necessary to describe the program state. Temporary variables, for instance,
should always be projected out as soon as they are not needed anymore. Fur-
thermore, it is beneficial to perform a liveness analysis on the local variables
of a function. The removal of all domain variables associated with dead local
variables results in a speedup of 143% on our larger example program.

The next section discusses how variables are added to the domain and
thereby addresses the question of what the value of a variable is that is not
mapped to either a range or a TVPI variable.

10.2 Inferring Relevant Fields and Addresses

This section addresses a precision loss that may occur when adding new vari-
ables to a polyhedron. Specifically, we consider the problem of refining the
way dynamically allocated memory regions are summarised. The analysis
presented in Chap. 5 proposes to merely summarise dynamically allocated
memory by the location of the call to malloc. Many programs, however, wrap
malloc in a function that terminates the program if the allocation fails. Sum-
marising the dynamic memory regions in the proposed way would, in this
case, result in all dynamically allocated memory being summarised into a sin-
gle abstract memory region. This results in a severe loss of precision, which
can already be observed in the simpler setting of a points-to analysis [140].
In the actual implementation, dynamic memory regions are therefore sum-
marised if their locations in the program and the current call stack coincide.
When using this heuristic, a wrapper function around malloc has no effect on
how allocation sites are merged. On the downside, the number of summarised
heap regions is not known up-front since the call stacks by which regions are
summarised only arise during the analysis. Thus, the map H : D → X ×X of
summarised memory regions has to be populated during the analysis.

In order to illustrate the problems with this approach, consider the control-
flow graph in Fig. 10.2, which depicts a simplified �����-loop that contains
a call to malloc. The edges of the control-flow graph are decorated with the
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Fig. 10.2. Allocating a dynamic memory region m ∈ D in a loop requires a special
join if the variables xm and xs, 〈xm, xs〉 = H(m), are initialised on-the-fly.

abstract states P,Q,R, S, T ∈ Num, where Q = P �N T and where S, R are
defined in terms of Q and an unspecified condition c. In order to define T ,
suppose that the allocated memory is summarised by the abstract memory
region m ∈ D. For the sake of the example, consider only the two variables
〈xm, xs〉 = H(m), where xm denotes the number of concrete memory regions
m summarises and xs denotes their size. Chapter 5 on the abstract semantics
suggests settin both variables to zero at the start of the analysis.

Suppose now that the summarised memory region m ∈ D is created on-
the-fly; that is, during the first evaluation of the malloc statement. Creating
this new memory region m also creates new polyhedral variables 〈xm, xs〉 =
H(m). To infer any information, these variables must be initialised before
evaluating the abstract transfer function of malloc. Thus, on creation of the
new abstract memory region m, the state space feeding into the malloc-
statement is intersected with xm = 0 and xs = 0. The transfer function that
was defined in Fig. 6.5 on p. 122 remains unchanged and thus increments xm to
one (indicating that m summarises one region) and sets xs to the argument s.

Initialising xm and xs to zero on creation of the memory region m ∈ D is
straightforward, such that the semantics of malloc in the first iteration of the
loop can be summarised as T = S �xm := 1�xs := s, where s is the value of
the parameter to malloc. Now consider the result of calculating Q = P �N T .
Since both variables, xm and xs, have not been used before, the sets of values
P (xm) and P (xs) are both unbounded. Thus, the join P �N T will remove
all information on xm and xs. Any access to m will now trigger a warning,
as xm > 0 cannot be guaranteed, thereby indicating that the memory region
might already be freed; furthermore, xs is arbitrary, rendering every access
out-of-bounds. Ideally, xm and xs would have been initialised at the start of
the analysis such that P (xm) = 0 and P (xs) = 0, which would yield the best
precision in our abstraction of malloc. Since this is not possible when adding
new memory regions m ∈ D on demand, the state P has to be refined after
m is created. One possibility is to add the equalities xm = 0 and xs = 0 to
all non-empty polyhedra that are stored in the analyser, which corresponds
to initialising the two variables at the start of the analysis. This strategy is
less than ideal since it requires the modification of all polyhedra stored in the
analyser, even if they represent stable states that will never be revisited again.
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10.2.1 Typed Abstract Variables

A more lightweight method of avoiding the precision loss above is to modify
the join operation such that it initialises the two variables while calculating
the join; i.e., calculating Q = (P �N {xm = 0, xs = 0}) �N T . In this ad hoc
method, each abstract variable x ∈ X , where x /∈ XT has a type associated
with it that defines a safe range for that variable. The range must be safe in the
sense that it constitutes a sound assumption about the value of the variable at
any program point. For instance, the type of a byte-sized variable is associated
with the safe range [0, 255], which corresponds to all possible bit patterns in
the concrete program. Interestingly, a safe range for the variable xm is [0, 0]
since assuming that m does not correspond to any concrete memory region is
a safe assumption because every access to m will raise a warning. The idea is
to insert the range whenever two polyhedra are joined and a variable is present
in one but not the other. While inserting a safe range recovers the precision
in the example above, it may lead to unwanted side effects. Assume that the
loop above is part of a bigger loop such that the range of xm at the end
of the loop R is propagated back to the beginning of the loop P . If xm is
found to be unstable in the outer loop, all constraints on xm may be widened
away such that P would be updated with a state where xm is unbounded.
A new evaluation of the inner loop in which the memory region m is used
after the malloc statement is evaluated will result in a warning (since xm is
unbounded) but will also restrict xm to a finite range (since the user has been
warned about the erroneous range of xm). Upon calculating the join P �N T ,
the variable xm is again unbounded in P but bounded in T such that the safe
range xm = 0 is inserted into P before the join is calculated. Hence, the newly
calculated P is smaller than the previous value, which indicates that inserting
a safe range whenever a variable is unbounded can jeopardise the termination
of the fixpoint calculation. Thus, a more principled approach is necessary.

One solution to the non-termination problem is to annotate the polyhedron
with a set of variables that it contains. This set might contain a variable even
if it is unbounded in the polyhedron. This set of variables can then be propa-
gated around just like a separate domain. Whenever two polyhedra are joined
whose sets of variables differ, the missing variables are inserted into the cor-
responding other polyhedron using the safe range. This approach finesses the
problem of reintroducing variables once they become unbounded but requires
that an additional set of variables be stored with every polyhedron.

The implementation of the TVPI domain uses a more unconventional ap-
proach in that it reinterprets the absence of a variable by assuming that the
variable takes on its safe range. In this approach, a single global table of types
is necessary that maps every variable to its safe range. A domain with no
information therefore maps every variable to the range implied by its type.
In contrast, a domain in which all variables are unbounded has to contain
an entry for each variable that maps to the unbounded interval. As a conse-
quence, projecting out a variable will insert the variable into the domain with
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rand()

ip_info.addr[0]=0;

ip_info.addr[1]=0;

ip_info.addr[2]=0;

ip_info.addr[3]=0;

true

false

P

Q

R

S

T

(int) ip_info=0;

U

Fig. 10.3. Adding new fields to the F map. The safe ranges [0, 255] are inserted
into S for the byte-sized fields, whereas the safe range [0, 232 − 1] is inserted into T
for the four-byte integer field if either branch is evaluated with an empty field map.

an unbounded interval. The analysis, in turn, must be careful to distinguish
between projecting out a variable and removing a variable. The former oper-
ation is used in assignments when a variable must be unbounded since it may
be restricted to a value outside its safe range. The latter is used to reduce the
size of the domain; for example, when variables go out of scope.

10.2.2 Populating the Field Map

Adding variables on-the-fly not only allows for a context-sensitive treatment
of dynamically allocated memory regions but is also key to populating the
map of fields F : M ∪ D → P(Z × Z × X ). A possible precision loss was
pointed out in Sect. 6.4, where different but overlapping fields were added in
two different branches of the following conditional:

�� (rand ()) { (���) ip_info =0; } ���� {
ip_info.addr [0]=0; ip_info.addr [1]=0;
ip_info.addr [2]=0; ip_info.addr [3]=0; }

Fig. 10.3 depicts the control-flow graph of the code fragment above with
polyhedra P,Q,R, S, T, U ∈ Num decorating the edges. Suppose that ip_info
has no fields associated with it before the code is executed. The evaluation of
the conditional will add one 4-byte field for the first branch and four 1-byte
fields for the second branch. Let these fields be represented by x4 and by
x0, . . . x3, respectively. One disadvantage of adding variables on demand is
the assumption that every polyhedron includes the new variable as if it were
constrained to its safe range; this assumption is too weak when adding fields
that overlap with other fields. For instance, if the branch with the polyhedra
R,S is analysed first, a 4-byte field is added and S = R � x4 := 0. When
analysing the other branch, the 4-byte field in Q is in the field map but merely
constrained to the safe range [0, 232 − 1]. The first three byte-sized updates
add new variables but fail to refine x4 since the upper bits are not constant.
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When adding the fourth byte-sized field, the upper eight bits of x4 can be
set to zero. Thus, in the join U = T �N S, x0, . . . x3 are zero in T but take
on their safe range in S, whereas x4 is restricted to less than 224 in T and is
zero in S. A read access to the 4-byte field in the context of U will propagate
some information between the variables using the function prop in Fig. 5.2
on p. 95. Without going into detail, this step tightens the ranges of x4 and
x3 to zero but leaves x0, . . . x2 constrained to [0, 1]. Interestingly, if the Q,T
branch is evaluated first, the byte-sized fields are present when analysing the
4-byte access, and all five fields are set to zero in S. In this case, a 4-byte read
access in the context of U will propagate enough information that all fields
will be known to be zero. In this case, adding fields on demand is as precise
as specifying them up front.

The fact that the iteration strategy determines the outcome of the analy-
sis is not very satisfactory. However, the impact is marginal since overlapping
fields are rare and writing overlapping fields in basic blocks that do not dom-
inate each other is even less likely to occur. The problem could be refined by
extending the type system to indicate which variables overlap, thereby push-
ing the task of propagating information between overlapping fields onto the
domain. As the propagation of values is based on temporary variables, the
implementation as part of the domain seems to be too intrusive. In practice,
this effort seems to be exaggerated given the frequency of the phenomenon.

We conclude the topic of adding variables on demand with an overview of
the possible variable types.

A Summary of Safe Ranges

In this section, we summarise the various ranges that are used to add variables
on demand. In particular, the analysis creates the following types:

• For variables representing the number of dynamically allocated memory
regions that are summarised in one address, the safe range is [0, 0].

• For variables representing the size of dynamically allocated memory re-
gions, the safe range is [0, 232 + 231 − 1]; i.e., any size between zero and 3
GB is possible.

• For variables representing fields of s bytes, the safe range [0, 28s − 1] is
inserted, where s = 1, 2, 4, 8.

• For variables representing nul positions of memory regions of s bytes, the
safe range [0, s] is inserted.

• For flags that specify if an address is in a points-to set, the safe range is
[0, 0].

Note that the last two variable types will not be used until Chap. 11 and
Chap. 13, respectively. Note further that temporary variables have no type
and are projected out when they do not appear in both arguments of a join.

The last topic of this chapter addresses requirements on the analysis with
respect to applying widening.
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10.3 Applying Widening in Fixpoint Calculations

The widening operator on polyhedra extrapolates changes between loop
iterates in order to force the fixpoint computation to terminate. In the con-
text of the TVPI domain, widening amounts to applying the planar widening
operator to each planar projection in the domain. The result, however, is
not necessarily a widened and closed TVPI domain: A widening operator on
sets of inequalities over n dimensions requires its input systems to be non-
redundant [62]. This property is satisfied for each planar projection of a closed
TVPI system. However, the key idea of the TVPI domain is that the closure
operation expresses existing information in terms of inequalities over every
pair of variables. These additional inequalities are by definition redundant
with respect to the whole system, which jeopardises the correctness of widen-
ing. Miné presented an example of how interleaving closure and widening can
indeed compromise termination of a fixpoint computation [128]. This non-
terminating computation can be generated by the following C fragment:

y=z;
�� (rand ()) z--; ���� z++;
assert(y<=x)
�� {

�� (rand ()) x--; ���� x++;
i = min(y-x,x-z);

} �	��� (y-x<=i && x-z<=i);

Here, the calls to the random number generator rand() are used to model
non-deterministic behaviour. In order to discuss a fixpoint computation of
the program above, consider the control-flow graph in Fig. 10.4, whose edges
are decorated with TVPI polyhedra P,Q,R, S, T ∈ Two. For the sake of
argument, we assume that program variables have an infinite range such that
variables do not wrap. Assuming an unrestricted state space, evaluating the
first statement and conditional gives rise to the system P = {z−1 ≤ y ≤ z+1}.
Evaluating the assertion y<=x and closing the system yields Q = {z − 1 ≤
y ≤ z + 1, y ≤ x, z ≤ x + 1}. The loop is characterised by R = Q �P T , S =
R�x := x−1�P R�x := x+1, and T = {z−1 ≤ y ≤ y, y ≤ x+ i, z ≤ x+ i},
where i is the value returned by the statement min(z − x, y − x). In order to
examine the computation of a fixpoint, let Pi denote the set of inequalities
P in iteration i. Widening is incorporated by replacing R = Q �P U with
R0 = Q and Ri+1 = Ri∇(Ri �P Ti) for all i ≥ 0. For best precision, the loop
body is always evaluated in terms of the closed system cl(R). The fixpoint
calculation proceeds as follows:



10.3 Applying Widening in Fixpoint Calculations 193

rnd()

y = z;
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z--; z++;
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i=min(z-x,y-x);

y<=x
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P

Fig. 10.4. Program to demonstrate the interaction between widening and closure.

R0 = cl(R0) = { z − 1 ≤ y ≤ z + 1, y ≤ x, z ≤ x + 1 }
S0 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 1, z ≤ x + 2 }
T0 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 1, z ≤ x + 1 }

R0 �P T0 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 1, z ≤ x + 1 }
R1 = { z − 1 ≤ y ≤ z + 1, z ≤ x + 1 }

cl(R1) = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2, z ≤ x + 1 }
S1 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 3, z ≤ x + 2 }
T1 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2, z ≤ x + 2 }

R1 �P T1 = { z − 1 ≤ y ≤ z + 1, z ≤ x + 2 }
R2 = { z − 1 ≤ y ≤ z + 1 }

cl(R2) = { z − 1 ≤ y ≤ z + 1 }
T2 = { z − 1 ≤ y ≤ z + 1 }

At this point, T2 �P R2 and a fixpoint is reached. Note that the variable
i is an aid to extracting the smaller of the two constants c1, c2 of the two
inequalities z − x ≤ c1 and y − x ≤ c2 from S. An equivalent formulation
that only involves a conditional is x-z<=y-x && y-x<=z-x. However, these
inequalities would be normalised to 2x−z−y ≤ 0 and −2x+y−z ≤ 0, which
cannot be approximated with the methods presented in Sect. 8.2.3 on p. 160.

Widening removes inequalities in certain projections, which creates a non-
closed TVPI system if other inequalities exist that, when combined, imply a
slightly weaker inequality than the one that had been removed. (No inequal-
ities can exist that imply exactly the same inequality since these would have
to have changed and would thereby be removed by widening.) In the example
above, the inequality y ≤ x in R0 is relaxed after one iteration to y ≤ x + 1
and thus removed by widening. However, closing R1 reintroduces the weaker
y ≤ x + 2. While the loop should be analysed with this closed system, the
next widening may not be performed with respect to the closed cl(R1) but
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with respect to the original system R1. In fact, changing the definition of Ri

to R0 = Q and Ri+1 = cl(Ri∇Ri �P Ti) yields the following non-terminating
calculation:

R0 = { z − 1 ≤ y ≤ z + 1, y ≤ x, z ≤ x + 1 }
T0 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 1, z ≤ x + 1 }

R0 �P T0 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 1, z ≤ x + 1 }
R0∇(R0 �P T0) = { z − 1 ≤ y ≤ z + 1, z ≤ x + 1 }

R1 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2 z ≤ x + 1 }
T1 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2, z ≤ x + 2 }

R1 �P T1 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2, z ≤ x + 2 }
R1∇(R1 �P T1) = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2 }

R2 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2 z ≤ x + 3 }
...

...
R2i = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2i z ≤ x + 2i + 1 }
T2i = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2i, z ≤ x + 2i }

R2i �P T2i = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2i, z ≤ x + 2i }
R2i∇(R2i �P T2i) = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2i }

R2i+1 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2i + 2 z ≤ x + 2i + 1 }
T2i+1 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2i + 1, z ≤ x + 2i + 1 }

R2i+1 �P T2i+1 = { z − 1 ≤ y ≤ z + 1, y ≤ x + 2i + 1, z ≤ x + 2i + 1 }
R2i+1∇(. . .) = { z − 1 ≤ y ≤ z + 1, z ≤ x + 2i + 1 }

Closing the result of widening adds y ≤ x + 2 to R1, which is kept when
widening this state with respect to R1 �P T1. Analogously, z ≤ x+3 is added
to R2 and is not affected by widening in the next iteration. The lower part of
the table shows the generalisation for i ≥ 1. Since the inequalities over x, y and
z, x are reintroduced alternately with increasing constants, the computation
does not terminate despite widening. Note that termination is guaranteed if
widening uses the previously widened state rather than a closure of it. Hence,
an analysis needs to keep the previous result of widening but should evaluate
the body of the loop with a copy of the state that is closed.

An alternative approach is to perform widening in such a way that all
inequalities are removed whose closure could reintroduce inequalities with a
different constant [9]. While more complex, such an approach has the potential
of reducing the number of iterations necessary to infer a fixpoint. Unfortu-
nately, the algorithm presented is geared towards the Octagon domain and
may not carry over to the more general TVPI domain.

Our implementation therefore follows Miné’s approach of storing the
widened state at the head of a loop without closing it. While the system
that is used to analyse the loop body could be closed, our analysis does not
do so due to the lack of an implementation of the full TVPI closure. We have
not found an example where this leads to a loss of precision.

This concludes the discussion of the TVPI abstract domain. We now focus
on mechanisms to improve the overall precision of the analysis.
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Improving Precision
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Tracking String Lengths

Programs that provide Internet services such as email, web browsing, and re-
mote login communicate over the network by sending streams of bytes. Most
of these exchanges are interpreted as strings (sequences of characters) that
denote commands or requests. Parsing these commands is a particular chal-
lenge in servers written in C since the received byte stream is retrieved in
chunks, where each chunk has an explicit size. Using chunks of memory with
explicit size stands in contrast to the convention of standard string functions
in C, which expect the length of a string to be determined by a nul char-
acter (a zero byte) at the end of a string. Mixing these two conventions can
lead to subtle bugs in the program that do not show up until, for example, a
malicious attacker sends a request string that contains a nul character. An-
other example is the program presented in the introduction (Fig. 1.2), which
is incorrect on many platforms yet probably works seamlessly on most inputs
since characters larger than 127 are rarely encountered in text files.

To prove the memory management of server software correct, an analysis
must be able to express the length of a string in both representations. While
the ability to argue about explicitly sized buffers was already given in the
value-range analysis presented in previous chapters, tracking the terminating
nul position requires a special abstraction. For the sake of an efficient analy-
sis, it is not possible to model the contents of a memory buffer explicitly.
Moreover, dynamically allocated buffers may be of different sizes in sepa-
rate runs of a program and therefore cannot be represented explicitly. Hence,
rather than inferring the possible content of a buffer, we infer information
about its contents. Specifically, this chapter details how the position of the
first nul character in each memory region can be tracked, which allows a
precise analysis of programs that make use of implicitly terminated strings.
The decision to track only the first nul position ensures that only a single
variable is needed to argue about the content of an arbitrarily sized memory
region. Thus, the number of variables needed to infer information about string
buffers is finite.
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This chapter presents the modifications to the abstract semantics neces-
sary to track nul positions of memory regions. It is organised as follows.
Section 11.1 presents an example that copies a string using pointer opera-
tions. We deduce and solve an inequality system and generalise the approach
in Sect. 11.2, where we also refine the abstraction map ∝. The chapter con-
cludes with an overview of work related to string buffer analysis.

11.1 Manipulating Implicitly Terminated Strings

Parsing an incoming request for further processing is usually done by a mix
of string functions from the C standard library and hand-crafted loops that
iterate over incoming string buffers. The way standard string functions such
as strlen or strcpy modify nul positions can be implemented as primitives.
However, the analysis of pointer accesses to buffers within loops requires that
the change of the terminating nul be updated with each pointer access. Con-
sider the following code that uses ����-pointers to copy a string:

���� *p;
���� t[16] = "Aero";
���� *u = "plane�";
p = t+4;
����� (*p=*u) { p++; u++; };
printf("t�=� ’%s ’\n", t);

The purpose of the loop is to append the contents of u to t and to print
the result. The call to printf requires that the passed-in pointer t point to a
nul -terminated string. In order to verify that no out-of-bounds access occurs
during the execution of printf, the analysis must be able to infer that the
16-element character array that t points to contains a nul position in one
of its 16 elements. The said array is initialised by a 5-byte string constant
that includes a terminating nul character. The buffer is thereafter modified
by copying characters pointed to by u, which initially points to a string buffer
containing the six characters "plane�" but is repeatedly incremented until
the nul character at u[6] is reached. Observe that t is not modified directly
but rather through the pointer p, which is initialised to point to t[4], which
corresponds to the initial nul position of the 16-element character array.
Thus, during the very first execution of the loop, the nul position of t is
overwritten. During the next five iterations, t might or might not contain a
nul position. In the final iteration, the nul position contained in the buffer
pointed to by u is copied to t. The task of the analysis is to infer invariants
in the form of a single polyhedron that represents these three phases of the
loop and furthermore indicates that the loop terminates iff p points to t[10].

All this information can be inferred automatically by manipulating an
abstract variable that represents the first nul position of t. Specifically, let
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String Constants.

[[ v =”c0c1 . . . ck−1” ]]�Stmt〈N, A〉 = 〈N ′ � xn := k, A′〉
where xn = S(L(v))

〈N ′, A′〉 = clearMem(v, 0, k, N, A)

Fig. 11.1. Abstract transfer function for assigning a string constant.

S : A → X assign a variable xa
n ∈ X that indicates the location of the first

nul character relative to the abstract address a ∈ A, where xa
n = S(a).

Since each memory region m ∈ M ∪ D has an associated abstract address
L(m), a single nul position S(L(m)) is manipulated for each memory region
during the analysis of a program. Thus, the number of variables required to
track nul positions is proportional to the number of declared variables and
summarised heap regions. Chapter 13 will detail how to reduce the number of
variables representing nul positions further. In the context of the example, let
tn = S(L(t)) denote the first nul position of t. Note that the nul positions
of the pointers u and p are irrelevant (they contain an address consisting of 4
bytes, of which some might be zero) and that the nul position of the buffer
pointed to by u is always 6.

11.1.1 Analysing the String Loop

We now detail how the previously described static analysis can be extended to
successfully prove that the buffer t that is passed to printf is nul terminated
and hence that the printf statement never accesses t out of bounds.

In order to infer that the initial nul position of t resides at index 4 (the
fifth element), the abstract semantics of assigning a string constant has to be
modified as shown in Fig. 11.1. As before, the content of the memory region
v is cleared and the individual characters making up the string are ignored.
What is retained, however, is the information that the kth byte of the memory
region v is nul by setting the variable S(L(v)) to k. In order to make the rest
of the abstract semantics aware of nul positions, it is now merely necessary to
redefine the helper functions that access memory regions. Before we redefine
the four access functions readF,H , writeF,H , copyMem, and clearMem from
Chap. 5, we illustrate the required changes to these functions by discussing
the analysis of the loop in the running example.

To this end, consider the translation of the example into Core C as shown
in Fig. 11.2. We associate a polyhedron with each label P,Q,R, S that repre-
sents the state space at that program location. Rather than delving into the
complexity of the abstract semantics, we merely deduce an equation system
from the control-flow graph of the program, which is presented in Fig. 11.3.

For simplicity, let u, p ∈ X denote the 4-byte fields of the pointers u and
p that denote the offsets relative to the addresses of s1 and t, respectively.
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1 var s1 : 7, s2 : 10;

2 s1 = "plane�";

3 s2 = "t�=�’%s’\n";

4 function main

5 local p : 4, q : 4, t : 16, u : 4,

6 tmp1 : 4, tmp2 : 4, tmp3 : 4;

7 P:

8 t = "Aero";

9 u = &s1;

10 tmp1 = &t;

11 32 p = tmp1 +4;

12 jump R

13 Q:

14 32 p = p+1;

15 32 u = u+1;

16 jump R

17 R:

18 8 c = *u;

19 8 *p = c;

20 �� (uint8) c!=0 then jump Q

21 jump S

22 S:

23 tmp2 = &s2;

24 tmp3 = &t;

25 printf (( uint32) tmp2 , (uint32) tmp3)

26 ������

Fig. 11.2. Translation of the running example into Core C.

Furthermore, let c ∈ X denote the byte-sized field of the corresponding vari-
able c. Let sn, tn ∈ X denote the nul positions of the buffers s1 and t,
respectively. Note that sn = 6 throughout the program. We assume that no
fields are tracked for s1 and t such that all information regarding these two
buffers is contained in sn and tn. The flow graph features additional states,
for instance T and U , which reflect the result of executing the basic blocks P
and Q before they are joined to yield R. Furthermore, V represents the state
at line 20 of the Core C program, before the conditional is evaluated.

The flow equations are given as follows. The initialisation statements in
Fig. 11.2 determine P ; in particular, P (sn) = {6} due to the statement
s1 = "plane�";, which is evaluated by the new rule for string constants
in Fig. 11.1. The same rule updates P to P ′ = P � tn := 4 by evaluating
t = "Aero";. The address assignments modify both the points-to and the nu-
meric domains. For the remainder of the loop, the points-to domain remains
unchanged, and hence we ignore any operations on it. The abstract variables
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c==0

t ="Aero";
u = &s1;
p = &t+4;

p = p+1;
u = u+1;

+

yes

no
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printf("t = '%s'\n", t)
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T
c = *u;
*p = c;

V

Fig. 11.3. The control-flow graph of the string-copying loop.

u and p corresponding to the pointer offsets of u and p are set to 0 and 4,
respectively; thus, U = P ′ � u := 0 � p := 4. The polyhedron R = U �N T
joins the initial state and the back arc from the loop.

In order to determine the polyhedron V before the evaluation of the con-
ditional, the result c of reading *u needs to be calculated. Since the buffer
s1 pointed-to by u has no fields, the value of c is merely defined by the nul
position sn. Assuming that the access to the buffer s1 is within bounds, three
principal accesses can occur, namely an access in front of the first nul position
if u < sn, an access at the first nul position if u = sn, and an access beyond
the first nul position if u > sn. In the first case, the read value must be
larger than zero since any potential nul position is located at higher indices.
An access at the same index as the nul position reads a value of 0. An access
beyond the first nul position can be nul (if the buffer contains more than
one nul character) or any other character. Thus, in this case the read byte
can be any value that can be represented as the interval [0, 255].

Since the buffers s1 and t contain no fields, a read access to either buffer
via readF,H calls prop on an empty access tree that returns a temporary
variable restricted to the unsigned range of a byte (that is, [0, 255]). For ease
of presentation, we merge this behaviour and the refinement of this range with
respect to the nul position to define the semantic equation of the assignment
statement c=*u as follows:

R′ = (∃c(R) �N {u < sn, 1 ≤ c ≤ 255})
�N (∃c(R) �N {u = sn, c = 0})
�N (∃c(R) �N {u > sn, 0 ≤ c ≤ 255})

The three different types of accesses are defined as a union of three different
behaviours; each behaviour, in turn, is guarded by an (in)equality expressing
the relation between access position and nul position. While these guards
partition the state space into three distinct regions, the intersection with the
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possible range for c is merely setting the value of c. The result R′ of the
semantics of c=*u determines the input state for the second assignment *p=c.

The effect of *p=c on the nul position of t depends on the value c and
the previous nul position. This update features four guards that express the
possible relations between the access position p, the old nul position tn, and
the value c that is to be written at the access position:

V = R′ �N {p > tn}
�N R′ �N {p ≤ tn, c = 0}� tn := p

�N R′ �N {p < tn, c > 0}
�N ∃tn

(R′ �N {p = tn, c > 0}) �N {p < tn ≤ 16}

The first case retains the current nul position since the access position lies
beyond tn such that the nul position cannot be affected. The second case sets
the nul position tn to the access position p since a nul value c is written in
front of or on the current nul position. In the third case, the nul position
is unaffected since a non-nul character is written in front of the current
nul position tn. The fourth case applies when the current nul position is
overwritten by a non-nul character. The state that corresponds to this case,
namely R′�N {p = tn, c > 0}, is modified by projecting out the old value of the
nul position and setting the new nul position to be greater than the access
position p (since a non-nul character is written) but no larger than the size
of the buffer. Enforcing an upper bound on tn is done merely to improve the
precision of the join operations because a join with a bounded polyhedron is
often more precise. Note that this does not affect correctness: Even if the nul
position of t is modelled to be at index 16, this index is never accessed since
the bound checks in readF,H will restrict the pointer offset p to the valid range
[0, 15] before considering the effect of tn. Thus, it is irrelevant for correctness
whether the nul position tn is restricted to 16 or unbounded.

With respect to the semantics of the conditional, the polyhedron V is now
intersected with c = 0 and c �= 0 to yield the two results of the conditional:

Q = R′ �N {c > 0}
S = R′ �N {c = 0}

Here, the negation of c = 0 is implemented as an intersection with c > 0,
which is acceptable since c is always in the range [0, 255] and as such never
wraps. Incrementing the two pointers defines the remaining state T , which is
given by T = Q � p := p + 1 � u := u + 1.

Note that the evaluation of c during the write access assumes that c is
within the bounds of an unsigned character. The flow equations presented
later ensure that c is within bounds before the nul position is evaluated or
updated. If c is not within [0, 255], the nul position is updated conservatively.

This completes the equation system for the string-copying loop. The next
section calculates a solution using a fixpoint computation.
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11.1.2 Calculating a Fixpoint of the Loop

In this section, we infer a solution to the equations above. Given the initial
state P , calculating U is only a matter of evaluating the equation above.
For convenience, we write elements of Num as sets of inequalities such that
U = {sn = 6, tn = 4, u = 0, p = 4}. In order to calculate the remaining
states, a fixpoint calculation of the cycle R, V , Q, T is necessary. Using Jacobi
iteration [58], this fixpoint is inferred by setting R0 = V0 = S0 = Q0 =
T0 = ⊥N and calculating the iterates Rj+1, Sj+1, Vj+1, Qj+1, and Tj+1 by
evaluating the equations using Rj , Vj , Sj , Qj , and Tj on the right-hand sides.
The resulting iterates are shown in Fig. 11.4. For the sake of readability, we
omit {p = u + 4, sn = 6} from all inequality sets, as these are valid in every
state. Furthermore, P = {sn = 6} and U = {sn = 6, tn = 4, u = 0, p = 4}
are constant and therefore omitted. Since U is constant, Ui = U for all i and
the state for R is given by Ri+1 = U�N Ti, and, since T0 = ⊥N , R1 = U . Note
that the inequalities of states that have changed are shown in bold. The state
R1 is propagated along the control flow, leading to a new value of V . Given
that p = 4, the omitted equality p = u + 4 implies that u = 0. Since sn = 6
throughout, the definition of R′ implies that c is updated to the range of a
non-nul character, hence 1 ≤ c ≤ 255 appears in V2. Furthermore, writing a
non-nul character at position p = 4 triggers the fourth case in the definition
of V , which sets the nul position tn to p < tn ≤ 16; hence 5 ≤ tn ≤ 16
appears in V2. The conditional does not affect this state since c ≥ 0, and
thus Q3 = V2. Incrementing both pointers retains the omitted relationship
p = u + 4 but results in p = 5 appearing in the state T4.

In the iterate R5 = U�NT4, the inequalities−tn+12p ≥ 44 (or equivalently
tn − 12p ≤ −44) and p ≤ tn are introduced through the join operation. For
the sake of a more accessible illustration of inequalities that arise due to the
convexity of the state space, we shall illustrate the essential updates of the
table using graphs. For instance, the tn, p projection of the state R5 is depicted
in the first graph of Fig. 11.5. The cross indicates the point 〈4, 4〉, contributed
by U , whereas the line [[{p = 5, 5 ≤ t ≤ 16}]], indicated by the line segment,
depicts the contribution of T4. The grey area depicts the join of these states,
which constitutes the state R5.

Note that the most intricate join operations occur in the calculation of R′

and V since these states are defined by combining the different behaviours
that are chosen based on the input polyhedron. In order to see how an input
polyhedron is partitioned and transformed, it is helpful to apply the rules to
polyhedra that are as large as possible. To this end, we skip the discussion of
iterations 6–20 and only consider how R21 is transformed, as this triggers the
same behaviours as for R5, albeit with a larger range for p. Indeed, illustrating
the calculation with the range of 4 ≤ p ≤ 9 turns out to be simpler.
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The second graph in Fig. 11.5 depicts R21, which corresponds to R5 except
that p is relaxed to 4 ≤ p ≤ 9. Rather than arguing correctness of all iterates
up to R21, we show by induction that only the upper bound of p increases
with each loop iteration. Thus, assume that R21 is correct. We calculate R′ by
observing that 0 ≤ u ≤ 5 in R21; hence, u < sn and only the first case in the
definition of R′ contributes to the resulting state, in which case c is set such
that 1 ≤ c ≤ 255. It remains to show that the two inequalities 5 ≤ tn ≤ 16
and p < tn are correct in V22. Since c > 0 and p ≤ tn, only the last two cases
in the definition of V contribute to the result. In particular, the state space
R′ �N {p < tn}, which is delineated by the dashed line in graphs two and
three, is copied verbatim, as this behaviour expresses the fact that the nul
position tn is not affected if it lies beyond the current access position p. In
contrast, the state R′�N {p = tn}, depicted as a solid line, changes the current
nul position. In particular, since c > 0, the possible nul position lies past the
access position p and the end of the buffer, thereby creating the delineated
state in the third graph. This state and R′ �N {p < tn} both contain p < tn
(that is, p ≤ tn − 1), such that their join V22 contains p < tn.

Since c > 0, the conditional does not modify V22 such that it is propagated
to Q23 without change. Incrementing the two pointers defines T24, in which
the state for tn, p is shifted to the right by one unit. This shifted state is
joined with U , resulting in R25, which is shown in the fourth graph. The
point 〈4, 4〉 that constitutes U is again shown as a cross, while T24 is shown
as the delineated space. Note that T24 is bounded by p ≤ tn, which proves
our claim that this inequality is an invariant of the loop, at least for loop
iterations where p ≤ 10.

At this point of the fixpoint computation, 0 ≤ s ≤ 6, such that derefer-
encing the pointer u accesses the nul position. Thus, evaluating R′ in terms
of R25 triggers two behaviours, namely the first case, where u < sn (that
is, u < 6) and u = sn. The resulting values for c are shown in the fifth
graph of Fig. 11.5. Here, the square depicts access positions where 0 ≤ u ≤ 5,
1 ≤ c ≤ 255, and the cross indicates u = 6, c = 0. Graph six depicts the
state V26, which corresponds to the state V22 augmented with an additional
behaviour, which is expressed by the second case in the definition of V . Since
p = u + 4, it follows that p = 10 when c = 0. Thus, the nul position tn is set
to 10, which adds the point 〈10, 10〉, as indicated by the cross in the graph.

For the first time in the analysis of the loop, the conditional partitions
the state V26 into S27 = V26 �N {c = 0} and Q27 = V26 �N {c > 0}. The
former contains a single point in which c = 0 and, in particular, p = 10. The
c, u-projection of the state Q27 corresponds to the rectangular area denoted
in the fifth graph, which is the result of shrinking the space V26 �N {c > 0}
around the integral points, thereby reducing the inequality 255u + c ≤ 1530
to u ≤ 5. Since u ≤ 5, it follows that p ≤ 9 since p = u + 4. Integral shrinking
of the tn, p projection therefore results in the delineated space of graph six,
which constitutes Q27. Note that the shrunk space of Q27 is equal to Q26, so
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a fixpoint is reached at this point. We conclude the discussion of the example
with some interesting observations on the precision of equations.

11.1.3 Prerequisites for String Buffer Analysis

Observe that a precision loss occurs when tn is allowed to become unbounded
rather than restricting it to be no larger than the size of the buffer. In order to
illustrate this, reconsider graph six of Fig. 11.5. If tn were not bounded from
above in the definition of V , V26 would have no upper bound tn ≤ 16 and
the join of the second behaviour of V ′ (which contributes the point 〈10, 10〉)
and the unbounded state would not contain the inequality 6p + tn ≤ 70 but
merely p ≤ 10 as an upper bound. An intersection with the conditional would
then result in a state Q27 in which tn ≥ 10; that is, the fact that the first nul
position is at index 10, and hence within t, is lost.

A more benign loss of precision can occur when naively adapting the equa-
tion to signed ���� types. In this case, the range of a non-nul character in
Core C is −128, . . .− 1, 1, . . . 127. Given this range, R′ can be changed to the
following:

R′ = (∃c(R) �N {u < sn,−128 ≤ c ≤ 127}]])
�N (∃c(R) �N {u = sn, c = 0})
�N (∃c(R) �N {u > sn,−128 ≤ c ≤ 127})

Thus, an access in front of the nul position sn sets c to a range containing 0,
and hence the read character can always be zero. This implies that the loop in
the example may exit in any iteration, which is imprecise. However, even for
platforms where ���� is signed, the original definition of R′ is correct since
the abstraction relation ensures that [1, 255] maps to all non-zero sequences
of 8 bits. The next section justifies the choice of using the unsigned range on
all platforms.

11.2 Incorporating String Buffer Analysis

Extending the analysis presented in Chap. 5 to honour nul positions is a
straightforward task, as all memory accesses are ultimately expressed by the
four functions readF,H , writeF,H , copyMem, and clearMem. The notable ex-
ception to this is the semantics of assigning a string constant, which was
already presented in Fig. 11.1. Thus, in this section we present the functions
readStrS,F,H , writeStrS,F,H , copyMemStrS , and clearMemStrS , which must
be substituted into the abstract semantics in Figs. 6.2, 6.4, and 6.5 in order
to make the analysis aware of nul positions. Here, the additional parameter S
denotes the mapping S : A → X that takes each abstract address to the vari-
able representing the nul position, as discussed in the previous section. The
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readStrS,F,H(m, eo, s, N, A) = if s �= 1 then readF,H(m, eo, s, N, A) else 〈N ′′, x, a〉
where 〈N ′, x, a〉 = readF,H(m, eo, 1, N, A)

xn = S(L(m))
N ′′ =if inURange(N ′, x, 1) then N ′ �N {eo < xn, x > 0} �N

N ′ �N {eo = xn, x = 0} �N

N ′ �N {eo > xn}
else N ′

writeStrS,F,H(m, eo, s, ev, a, N, A) = 〈N ′′, A′〉
where 〈N ′, A′〉 = writeF,H(m, eo, s, ev, a, N, A)

xn = S(L(m))

es =

{
xs if m ∈ D ∧ H(m) = 〈xm, xs〉
size(m) if m ∈ M

N ′′ = N ′ �N {eo > xn} �N updateNul(N ′ �N {eo ≤ xn})
updateNul(N) =⎧⎨

⎩
writeNonNul(N �N {ev > 0}) �N

(N �N {ev = 0} � xn := eo) if s = 1 ∧ inURange(N, ev, 1)
∃xn(N) �N {eo ≤ xn ≤ es} otherwise

writeNonNul(N) = N �N {eo < xn}�N

(∃xn(N �N {eo = xn}) �N {eo < xn ≤ es})

Fig. 11.6. Obeying nul positions when reading from and writing to memory.

new memory access functions make use of the original functions and refine
their actions if a character is accessed.

Figure 11.6 presents the readStrS,F,H function, which refines readF,H . If
more than one byte is accessed, the function reduces to readF,H since the nul
position cannot easily refine the value of a variable that is wider than 1 byte.
In contrast, a character-sized value x can be refined if it is in the range of an
unsigned byte. While this property could be enforced by wrapping the result
to a uint8, we refrain from doing so in order not to reduce precision when the
program accesses an int8 variable. Refinements of this tactic are possible; for
instance, a variable in the range [−128,−1] can be interpreted as a non-zero
character in addition to the range [1, 255]. The numeric domain N ′ is refined
by the three cases discussed in the example. The first is guarded by eo < xn;
that is, it deals with accesses in front of the nul position xn, in which case the
value of x, which is known to be in [0, 255], is restricted to [1, 255]. The second
case deals with accesses at the nul position and restricts the return value to
zero. The third case handles accesses beyond the first nul position, in which
case no refinement of the read value is possible. Note that an access to a mem-
ory region that does not contain any field will return a temporary variable for
x that is restricted to [0, 255], even if the statement that triggered the access
is reading an int8 value. This can be observed in the definition of readF,H ,
which in this case calls readAcc(1, εAT , N), which is defined in Fig. 5.2 on
p. 95. While this behaviour is a prerequisite for inURange(N ′, x, 1) to hold,



11.2 Incorporating String Buffer Analysis 211

clearMemStrS(m, eo, s, N, A) = 〈∃xn(N ′) �N {0 ≤ xn ≤ es}, A′〉
where 〈N ′, A′〉 = clearMem(m, eo, s, N, A)

xn = S(L(m))

es =

{
xs if m ∈ D ∧ H(m) = 〈xm, xs〉
size(m) if m ∈ M

copyMemStrS(m1, o1, m2, o2, s, N, A) = 〈N ′′, A′〉
where 〈N ′, A′〉 = copyMem(m1, o1, m2, o2, s, N, A)

x1
n = S(L(m1))

x2
n = S(L(m2))

es =

{
xs if m1 ∈ D ∧ H(m1) = 〈xm, xs〉
size(m) if m1 ∈ M

N ′′ =

{
N ′ � x1

n := x2
n if o1 = o2 = 0

∃x1
n
(N ′) �N {0 ≤ x1

n ≤ es} otherwise

Fig. 11.7. Obeying nul positions when clearing and copying memory regions.

it is not as specific to string buffer analysis as it may seem: Returning an
unsigned range also allows for more linear relationships between overlapping
fields, as illustrated in fromLower in the same figure.

Refining a write access to update the nul position correctly is slightly
more involved. In particular, the nul position has to be updated even if the
access is larger than a character or if the value to be written is not in the range
[0, 255]. For this reason, the function writeStrS,F,H updates the nul position
in several stages. The first stage defines N ′′ and distinguishes between accesses
past the current nul position, in which case the nul position is not affected
and accesses at or in front of the current nul position, in which case the
function updateNul is called. The latter function distinguishes between two
cases. If the written value is within the range [0, 255] and a character-sized
value is written, the nul position is updated. If the written value ev is positive,
writeNonNul is called; if it is zero, the nul position xn is simply set to the
access position. If the written value ev is out-of-range of an unsigned byte
or is wider than a byte, the nul position is set to lie between the access
position eo and the size of the accessed memory region es, which is either
a constant or the symbolic upper bound of a dynamically allocated memory
region. Finally, the function writeNonNul is called to update the nul position
when a non-zero character is written. If the access lies in front of the current
nul position, the nul position does not change. If the access coincides with
the nul position, it is pushed to the right; that is, the new nul position lies
beyond the current nul position. In both cases, the nul position is restricted
to be no larger than the buffer size es, thereby ensuring that join operations
do not lose precision due to unbounded inputs.

The two functions that handle the assignment of whole structures, namely
clearMem and copyMem, have to be replaced by the nul position-aware
functions clearMemStrS and copyMemStrS, shown in Fig. 11.7. The function
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clearMemStrS sets the nul position of the memory region to any possible po-
sition in the buffer and one element beyond the end of the buffer if the buffer
itself contains no nul . The copyMemStrS function performs the same step if
the offsets of the target and source region are not both zero. Otherwise, the
nul position of the source is simply assigned to the target. A more precise
implementation is possible when the offsets are non-zero, but the approach
presented is sufficient in practice.

The next section refines the abstraction relation to express information
on nul positions, thereby showing that our analysis can be extended in a
modular way.

11.2.1 Extending the Abstraction Relation

The analysis presented in Chap. 5 uses abstract variables to express the values
of fields – that is, the possible bit patterns of small, fixed consecutive regions
in memory. In contrast, variables denoting nul positions express a property
of a memory region as a whole. A given memory region may contain fields as
well as information in the polyhedral variable representing its nul position.
Thus, the abstraction relation ∝ must combine the information contained in
fields with that representing the nul positions of the variables. We alter the
relation ∝ by redefining the concretisation map γρ : Num×Pts → P(Σ). The
original definition of γρ was given in Section 5.4 as follows:

γρ(N,A) = {memρ(v, A) | v ∈ [[N ]]}

The set γρ(N,A) ⊆ Σ denotes all memory configurations for a given nu-
meric domain N ∈ Num and a points-to domain A ∈ Pts. Specifically, for each
vector of values v ∈ [[N ]], the function memρ is called to create the concrete
memory states that correspond to the vector of values v. In this section, we
redefine γρ to express the information contained in each nul position variable
S(a), a ∈ A. In particular, the concrete state spaces that correspond to a given
vector v are refined by the states stringρ(v) such that the concretisation can
be redefined to incorporate the information on nul positions as follows:

γρ(N,A) = {memρ(v, A) ∩ stringρ(v) | v ∈ [[N ]]}

Here, stringρ : Num → P(Σ) is defined as an intersection of all memory
states, in which the nul positions of the memory regions are set to a specific
location within the region. Thus, the intersection above refines the memory
states returned by memρ with the additional information available from the
abstract variables denoting the nul positions. The function stringρ itself is
defined as follows:

stringρ(v) =
⋂

m∈M

⎛
⎝ ⋂

a∈ρ(L(m))

{nul size(m)
a (πn(v)) | xn = S(L(m))}

⎞
⎠
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∩
⋂

m∈D

⎛
⎝ ⋂

a∈ρ(L(m))

{
nulπs(v)

a (πn(v))
xn = S(L(m))∧
H(m) = 〈xi, xs〉

}⎞
⎠

The definition distinguishes the case of imposing a nul position onto a
declared memory region m ∈ M and onto a dynamically allocated region
m ∈ D. In the first case, the size size(m) is fixed by the program, whereas in
the second case the size is determined by the current value of xs, where xs is
the abstract variable denoting the size of the dynamic memory region m. The
actual memory configurations are created by nulsa(n), which defines a set of
stores σ ⊆ Σ in which the bytes a, . . . (a + s− 1) are restricted to reflect the
first nul position at the index n. This function is defined as follows:

nulsa(n) =
⋂

i∈[0,n−1],i<s

{bits1
a+i(v) | v ∈ [1, 255]}

∩
⋂
n<s

bits1
a+n(0)

The definition above uses the function bitss
a+i from Sect. 4.4 to create

stores where the byte at address a + i is restricted to [1, 255], where i ranges
over all indices of the buffer that lie in front of the nul position. The second
line represents the set of stores in which the byte at address a + n is set to
nul. As before, we require that any intersection ranging over an empty set,
or in this case an unsatisfiable condition, is equated to Σ such that the set
of states is not restricted. In particular, the condition in both cases ensures
that no stores are created in which bytes outside of the buffer a, . . . (a+s−1)
are restricted. For instance, if the abstract state contains a state in which the
nul position lies beyond the size of the buffer, the second line reduces to an
intersection with Σ.

This concludes the presentation of the refined abstraction map. We finish
the chapter with a discussion of related work. The next chapter presents an
extrapolation strategy that is a prerequisite for an efficient analysis of string
buffers. Limitations of our analysis are presented later in Sect. 14.4.

11.3 Related Work

Wagner was the first to attempt an analysis of string buffers by tracking the
nul position within memory regions [184,185]. The implemented tool creates
a constraint system from the input C program, which is then solved using
intervals. Separating the C-to-constraints translation from the solving process
means that pointer operations cannot be analysed precisely. The constraints
generated by a pointer access depend on what fields are accessed, which in turn
depends on the pointer offset, which is not known until the constraint system is
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solved. Hence, a precise analysis that aims to be sound with respect to pointer
operations needs to alternate between generating and solving constraints. As
a consequence, Wagner cannot precisely model modifications of string buffers
through pointer accesses but merely models how library functions interact
with the nul position in buffers. The inability to treat pointer accesses renders
his analysis unsound. Furthermore, the use of intervals in the constraint solver
employed leads to imprecise results and thereby to a large number of incorrect
warnings, thereby prohibiting practical applications.

Dor et al. were the first to propose explicit tracking of nul positions in the
presence of pointer operations [71]. The nul position and the size of string
buffers are stored on a per-pointer basis such that a write through a pointer
p might change another pointer q if both point to the same underlying buffer.
In order to argue about relationships of the nul position between different
pointers, Dor et al. introduce special p overlaps q variables to quantify the
pointer offset and thereby model string length interaction. This tactic poten-
tially increases quadratically the number of abstract variables in the number
of program variables. Since their tool is based on the domain of polyhedra,
the large number of variables restricts the applicability of their analysis to
small examples. Worse, their analysis does not cater to weak updates; that
is, it writes through pointers that can possibly point to several buffers. This
renders their tool unsound.

In [167], we show that a single abstract variable is enough to infer infor-
mation on the nul position. Furthermore, we present a sound framework for
analysing a subset of C. In particular, we combine the value-range analysis of
variables with points-to analysis, which enables us to correctly distinguish be-
tween weak and strong updates. However, the functions presented for reading
and writing buffers are given by case distinctions on how the interval that de-
notes the access position and the interval of the nul position overlap, thereby
losing relational information, which would lead to a precision loss when differ-
ent iterates of a loop are joined. The analysis in this chapter is a refinement
of this earlier work in that the language is generalised to full C, nul positions
are associated with the string buffers rather than with the pointers that point
to them, and, most importantly, the abstract transfer functions are simpler
and more precise by modelling nul positions in a relational way.

Dor et al. revised their approach to an analysis called CSSV that is sound
on some C programs but uses program annotations [72]. However, as in the
work of Wagner, string manipulations are expected to be performed by the
standard C string functions and not through direct pointer accesses.

Many tools exist that use heuristics to find buffer overflows and are thus
unsound. On the positive side, tools such as Archer [189] can be applied to
large code bases, as the underlying analysis method is more lightweight. The
results of a heuristic analysis can be tuned between missing potential errors
and reporting too many false positives. Since it is unknown how many errors
these analyses miss, the precision of unsound tools is essentially incomparable.
However, the authors point out that the inability to argue about nul positions
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and the use of string functions from the C library that rely on nul positions
incur a substantial precision loss.
Other unsound approaches for analysing string operations, such as LClint [115,
116], can increase their precision by incorporating user-supplied annotations.



12

Widening with Landmarks

An inherent challenge in program analysis is the requirement to reason about
an arbitrary number of loop iterations in finite time. Polyhedra provide a
powerful way to summarise an arbitrary number of loop iterations using a fi-
nite representation. However, in order to quickly analyse a large or potentially
infinite number of iterations, special acceleration techniques are required. A
formal basis for accelerating a fixpoint computation is the widening/narrowing
approach that was developed in the context of abstract interpretation [59,62].

12.1 An Introduction to Widening/Narrowing

In order to illustrate the widening/narrowing approach on the domain of poly-
hedra and to discuss the implications of applying narrowing in an analyser,
consider the control-flow graph of ��� (i=0; i<100; i++) {/*empty*/}:

i<100i=0
/* empty */

i++

+

yes

no

P

Q

S

T

R

The analysis amounts to characterising the values that can arise on the
edges of the control-flow graph. For simplicity, assume that each edge is dec-
orated with an element of the numeric domain Num rather than a tuple
〈N,A〉 of numeric and points-to domains. Given that the program contains
only a single variable i, the polyhedra P,Q,R, S, T ∈ Num are represented as
possibly unbounded intervals over integers. In the example, the polyhedron
P = {0 ≤ i ≤ 0} describes the value of i at the beginning of the program.
The + node joins the polyhedra P and T to obtain Q = P �N T . Due to the
integrality of i, the polyhedra that characterise the two outcomes of the test
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j Pj Qj Rj Sj Tj

1 [0,0] ⊥N ⊥N ⊥N ⊥N

2 [0, 0] [0,0] ⊥N ⊥N ⊥N

3 [0, 0] [0, 0] ⊥N [0,0] ⊥N

4 [0, 0] [0, 0] ⊥N [0, 0] [1,1]
5 [0, 0] [0,∞] ⊥N [0, 0] [1, 1]
6 [0, 0] [0,∞] [100,∞] [0,99] [1, 1]
7 [0, 0] [0,∞] [100,∞] [0, 99] [1,100]
8 [0, 0] [0,∞] [100,∞] [0, 99] [1, 100]
1′ [0, 0] [0,100] [100,∞] [0, 99] [1, 100]
2′ [0, 0] [0, 100] [100,100] [0, 99] [1, 100]

Fig. 12.1. Calculating the fixpoint of a simple ���-loop using Jacobi iteration.

i < 100 are R = Q�N {i ≥ 100} and S = Q�N {i ≤ 99}. The last polyhedron
T is characterised by the update T = S � i := i + 1.

A solution to the equations can be found by applying Jacobi iteration [58],
which calculates new polyhedra Pj+1, Qj+1, Rj+1, Sj+1, Tj+1 from the polyhe-
dra of the previous iteration Pj , Qj , Rj , Sj , Tj . To ensure rapid convergence,
a widening point must be inserted into the Q,S, T cycle. Widening at Q
amounts to replacing the equation for Q with Qj+1 = Qj∇(Pj �Tj), where ∇
is a widening operator that removes unstable bounds [59]. The possible values
of i are given in Fig. 12.1 as intervals; the updated entries are shown in bold.

In iteration 5, the output of the + node is P4 �N T4 = {0 ≤ i ≤ 1}. The
widening operator compares P4 �N T4 against Q4 = {0 ≤ i ≤ 0} and removes
the unstable upper bound, yielding Q5 = {0 ≤ i}. Stability is reached in
iteration 8. The calculated post-fixpoint is now refined. This is realised by
replacing widening with narrowing; i.e., Qj+1 = Qj((Pj�Tj). For polyhedra,
the common choice is to define( = �N and to bound the number of iterations
[59, p. 290]. Hence, let Qj+1 = Qj �N (Pj �Tj), which yields a refined state 1′

and a further refinement 2′, which in this case coincides with the least fixpoint
of the original equations.

12.1.1 The Limitations of Narrowing

In order to illustrate one drawback of narrowing, consider a reanalysis of the
example above where the widening is applied on S rather than on Q. Thus, let
Sj+1 = Sj∇(Qi �N {i ≤ 99}). Figure 12.2 shows a difference after iteration 4.

In the first analysis, only the polyhedra Q and R are larger before narrow-
ing commences. In the second analysis, S and T are also larger before nar-
rowing. In order to illustrate the impact of this in the context of verification
of memory accesses, suppose /*empty*/ is replaced by b = array[i], where
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j Pj Qj Rj Sj Tj

1 [0,0] ⊥N ⊥N ⊥N ⊥N

2 [0, 0] [0,0] ⊥N ⊥N ⊥N

3 [0, 0] [0, 0] ⊥N [0,0] ⊥N

4 [0, 0] [0, 0] ⊥N [0, 0] [1,1]
5 [0, 0] [0, 1] ⊥N [0, 0] [1, 1]
6 [0, 0] [0, 1] ⊥N [0,∞] [1, 1]
7 [0, 0] [0, 1] ⊥N [0,∞] [1,∞]
8 [0, 0] [0,∞] ⊥N [0,∞] [1,∞]
9 [0, 0] [0,∞] [100,∞] [0,∞] [1,∞]
10 [0, 0] [0,∞] [100,∞] [0,∞] [1,∞]
1′ [0, 0] [0,∞] [100,∞] [0,99] [1,∞]
2′ [0, 0] [0,∞] [100,∞] [0, 99] [1,100]
3′ [0, 0] [0,100] [100,∞] [0, 99] [1, 100]
4′ [0, 0] [0, 100] [100,100] [0, 99] [1, 100]

Fig. 12.2. The placement of the widening point affects the fixpoint calculation.

array has 100 elements. To avoid an avalanche of false warning messages, it
is common practice to intersect S with the legal range of the index i [30], in
this case 0 ≤ i ≤ 99, yielding the polyhedron S′, and thereafter use S′ instead
of S. Moreover, since the out-of-bounds check amounts to the subsumption
test S ��N S′, it is straightforward to perform the check during fixpoint calcu-
lation; the test could be postponed until a fixpoint is reached, but this would
require S′ to be recalculated unnecessarily. However, this technique does not
combine well with narrowing since a warning is issued if S is nominated for
widening rather than Q, and thus the placement of the widening point can
determine whether a warning is issued or not.

Another implication of reducing a post-fixpoint with narrowing relates to
the way separate domains interact. Assume that the array above is embedded
into a C structure declared as ������ { ���[100] array; ���* p } s; and
that the loop body is changed to b = s.array[i]. Consider again the second
analysis, in which S is widened to {0 ≤ i} so that the upper bound of the array
index i is temporarily lost. In this case, a points-to analysis would generate
a spurious l-value flow from s.p to b. Once narrowing infers 0 ≤ i < 100,
it is desirable to remove this spurious flow. However, points-to analyses are
typically formulated in terms of either closure operations [99] or union-find
algorithms [176], none of which support the removal of flow information. Thus,
even if narrowing can recover precision in one domain, the knock-on precision
loss induced in other domains may be irrecoverable.

Furthermore, narrowing on polyhedra [59] cannot recover precision if the
loop invariant is expressed as a disequality [30]. For instance, narrowing has
no effect if the loop invariant in the example is changed from i<100 to the
semantically equivalent test i!=100. Since it is unrealistic to modify the
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program under test, narrowing is unable to recover precision in programs
with disequalities as loop conditions.

12.1.2 Improving Widening and Removing Narrowing

Rather than recovering inequalities through narrowing that were widened
away, our contribution is to use unsatisfiable inequalities as oracles to guide
the fixpoint acceleration. Specifically, we propose widening with landmarks,
which records inequalities that were found to be unsatisfiable in two consecu-
tive iterates. We then extrapolate to the first iterate that makes any of these
inequalities satisfiable. If this extrapolation is not a fixpoint, we continue until
no unsatisfiable inequalities remain, at which point standard widening is ap-
plied [10,91]. The rationale for observing unsatisfiable inequalities is that the
transition from unsatisfiable to satisfiable indicates a change in the behaviour
of a program. Widening with landmarks is similar in spirit to widening with
thresholds [30]. In this related approach, the value of an unstable variable is
extrapolated to the next threshold from a set of user-supplied values. Rather
than guiding widening with thresholds on individual variables, our approach
automatically observes linear inequalities that arise during the analysis of a
program, which are then used to bound the degree of extrapolation. As a con-
sequence, no narrowing is needed once a fixpoint is reached, which simplifies
the implementation of a fixpoint engine considerably.

The remainder of this chapter is organised as follows. Section 12.2 details
an example motivated by the last chapter on iterating over a nul-terminated
string, thereby presenting the ideas behind widening with landmarks.
Sections 12.3 and 12.4 formalise the notion of landmarks, which are used
in Sect. 12.5 to define an extrapolation strategy. We discuss our approach and
related work in Sect. 12.6.

12.2 Revisiting the Analysis of String Buffers

In this section, we explain the ideas behind widening with landmarks. Consider
the task of advancing a pointer s to the end of a string buffer by executing
the loop ����� (*s) s++;. For ease of presentation, we expand the loop as
follows:

���� s[32] = "the�string";
�	
 i = 0;
����� (true) {

c = s[i];
�� (c==0) ����
;
i = i+1;

};
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The task is to check that the string buffer s is only accessed within bounds.
This program is challenging for automatic verification because the loop invari-
ant is always satisfied and the extra exit condition within the loop does not
mention the loop counter i. In order to simplify the presentation, we merely
show the polyhedral operations resulting from applying the abstract seman-
tics. In particular, let n represent the index of the first nul position in s. The
control-flow graph of the string buffer example is decorated with polyhedra
P,Q,R, S, T, U as follows:

c==0i=0 i=i+1+

yes

noP Q

S

TR
c=s[i]

U

The initial values of the program variables are described by P = {i = 0, n =
10}. The merge of this polyhedron and the polyhedron on the back edge, U ,
defines Q = P �N U . To verify that the array access s[i] is within bounds,
we compute Q′ = Q �N {0 ≤ i ≤ 31} and issue a warning if Q ��N Q′. The
analysis continues under the premise that the access was within bounds and
hence R is defined in terms of Q′ rather than Q, following the definition of
readStrS,F,H in Fig. 11.6:

R = (∃c(Q′) �N {i < n, 1 ≤ c ≤ 255})
� (∃c(Q′) �N {i = n, c = 0})
� (∃c(Q′) �N {i > n, 0 ≤ c ≤ 255})

By assuming that the string s has no fields, the corresponding empty access
tree will return c such that 0 ≤ c ≤ 255. This range is thereafter refined by
readStrS,F,H , depending on where the read access occurs. The definition of
R above summarises these steps by removing all information pertaining to
c in Q′ and restricting c to the desired range. Specifically, the value of c is
restricted to [1, 255] if i < n and is set to 0 if i = n and to [0, 255] if i > n.
The last three equations that comprise the system are given by the following
definitions:

S = R �N {c = 0}
T = (R �N {c < 0}) �N (R �N {c > 0})
U = T � i := i + 1

Note that the disequality check c!=0 is implemented by the join of the two
state spaces R �N {c < 0} and R �N {c > 0} and that R �N {c < 0} = ⊥N

in this example, as the definition of R confines c to the range [0, 255]. Now
consider using widening to calculate a fixpoint of this system.
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255

1

1 10

c

i

2

5 20 30

R11

Fig. 12.3. State space R11 of the string example using widening.

12.2.1 Applying the Widening/Narrowing Approach

As before, we solve these equations iteratively, nominating Q as the widening
point to ensure convergence in the cycle Q,R, T, U . Thus, when the equa-
tions are reinterpreted iteratively, the equation Q is replaced with Qj+1 =
Qj∇(Pj �N Uj). Applying the standard widening/narrowing approach results
in the iterates shown in Fig. 12.4. Again, we apply widening when Q is evalu-
ated the third time, so that widening is applied on Q9 and P9�N U9 to obtain
Q10. The resulting polyhedron Q10 = [[{0 ≤ i}]] is intersected with the veri-
fication condition to yield Q′

10 = [[{0 ≤ i ≤ 31}]], thereby raising a warning
since Q10 �= Q′

10. Before proceeding to the evaluation of R11, observe that
∃c(Q′

j) = Q′
j in all iterations j since Pj does not constrain c and consequently

neither does Qj = Uj �N Pj . Given that Q′
10 allows i to take on any value

in [0, 31], the three cases in the definition of R, which are guarded by i < n,
i = n, and i > n, all contribute to the result R11. This result is depicted as the
grey region in Fig. 12.3, which shows the relationship between i and c. The
three regions whose join forms the polyhedron R11 are marked with two rec-
tangles and a small cross for the c = 0 case. Observe that applying narrowing
(that is, replacing Qj+1 = Qj∇(Uj�N Pj) with Qj+1 = Qj((Uj�N Pj)) yields
another iterate 1′ in which the value of i ranges over [0, 32], which still violates
the array bound check since Q′

1′ �= Q1′ , where Q′
1′ = Q1′ �N {0 ≤ i ≤ 31}

corresponds to Q1′ restricted to valid array indices.

12.2.2 The Rationale behind Landmarks

Consider the same fixpoint calculation using widening with landmarks as
shown in Fig. 12.6. We omit the first nine iterates before widening is ap-
plied since they coincide with those given in Fig. 12.4. While landmarks are
gathered throughout the fixpoint calculation, we focus on the calculation of
the polyhedron R, as it gives rise to the only landmarks that are of relevance
in this example. The three graphs in Fig. 12.5 depict the relation between i
and c in the polyhedra R3, R7, R11, which are the three iterates in which Rj
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j Qj Rj Sj Tj Uj

1 ⊥N ⊥N ⊥N ⊥N ⊥N

2 {0 ≤ i ≤ 0} ⊥N ⊥N ⊥N ⊥N

3 {0 ≤ i ≤ 0}
{

0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥N ⊥N ⊥N

4 {0 ≤ i ≤ 0}
{

0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥N

{
0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥N

5 {0 ≤ i ≤ 0}
{

0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥N

{
0 ≤ i ≤ 0,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

}

6 {0 ≤ i ≤ 1}
{

0 ≤ i ≤ 0,
1 ≤ c ≤ 255

}
⊥N

{
0 ≤ i ≤ 0,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

}

7 {0 ≤ i ≤ 1}
{

0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥N

{
0 ≤ i ≤ 0,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

}

8 {0 ≤ i ≤ 1}
{

0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥N

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 1,
1 ≤ c ≤ 255

}

9 {0 ≤ i ≤ 1}
{

0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥N

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

10 {0 ≤ i}
{

0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥N

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

11 {0 ≤ i}

⎧⎨
⎩

0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
i + 10c ≥ 10

⎫⎬
⎭ ⊥N

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

12 {0 ≤ i}

⎧⎨
⎩

0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
i + 10c ≥ 10

⎫⎬
⎭

⎧⎨
⎩

10 ≤ i,
i ≤ 31,
0≤c≤0

⎫⎬
⎭

{
0 ≤ i ≤ 31,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

13 {0 ≤ i}

⎧⎨
⎩

0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
i + 10c ≥ 10

⎫⎬
⎭

⎧⎨
⎩

10 ≤ i,
i ≤ 31,
0≤c≤0

⎫⎬
⎭

{
0 ≤ i ≤ 31,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 32,
1 ≤ c ≤ 255

}

14 {0 ≤ i}

⎧⎨
⎩

0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
i + 10c ≥ 10

⎫⎬
⎭

⎧⎨
⎩

10 ≤ i,
i ≤ 31,
0≤c≤0

⎫⎬
⎭

{
0 ≤ i ≤ 31,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 32,
1 ≤ c ≤ 255

}

1′ {0 ≤ i ≤ 32}

⎧⎨
⎩

0 ≤ i ≤ 31,
0 ≤ c ≤ 255,
i + 10c ≥ 10

⎫⎬
⎭

⎧⎨
⎩

10 ≤ i,
i ≤ 31,
0≤c≤0

⎫⎬
⎭

{
0 ≤ i ≤ 31,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 31,
1 ≤ c ≤ 255

}

Fig. 12.4. Fixpoint calculation of the string loop. The column Pj is omitted since
Pj = {i = 0} for all iterations j. Furthermore, we omit n = 10 from all polyhedra.

changes. The polyhedron R3 is derived from ∃c(Q′
3) = Q′

3 = {i = 0}. During
this computation, Q′

3 is intersected with {i < n, 1 ≤ c ≤ 255}, {i = n, c = 0},
and {i > n, 0 ≤ c ≤ 255}, which represent three different behaviours of the
program. As the fixpoint calculation progresses, polyhedra grow and new be-
haviours are incrementally enabled. A behaviour can only change from being
disabled to being enabled when one of its constituent inequalities is initially
unsatisfiable and becomes satisfiable. A fixpoint may exist in which not all
behaviours of a program are enabled; that is, these behaviours still contain
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Fig. 12.5. State space R11 of the string example using widening with landmarks.

j Qj Rj Sj Tj Uj

10

{
0 ≤ i,
i ≤ 10

} {
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

}
⊥N

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

11

{
0 ≤ i,
i ≤ 10

} ⎧⎪⎪⎨
⎪⎪⎩

0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
i + 10c ≥ 10

⎫⎪⎪⎬
⎪⎪⎭ ⊥N

{
0 ≤ i ≤ 1,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

12

{
0 ≤ i,
i ≤ 10

} ⎧⎪⎪⎨
⎪⎪⎩

0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
i + 10c ≥ 10

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

10 ≤ i,
i ≤ 10,
0 ≤ c,
c ≤ 0

⎫⎪⎪⎬
⎪⎪⎭

{
0 ≤ i ≤ 9,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 2,
1 ≤ c ≤ 255

}

13

{
0 ≤ i,
i ≤ 10

} ⎧⎪⎪⎨
⎪⎪⎩

0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
i + 10c ≥ 10

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

10 ≤ i,
i ≤ 10,
0 ≤ c,
c ≤ 0

⎫⎪⎪⎬
⎪⎪⎭

{
0 ≤ i ≤ 9,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 10,
1 ≤ c ≤ 255

}

14

{
0 ≤ i,
i ≤ 10

} ⎧⎪⎪⎨
⎪⎪⎩

0 ≤ i,
c ≤ 255,
255i + c ≤ 2550,
−i − 10c ≤ −10

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

10 ≤ i,
i ≤ 10,
0 ≤ c,
c ≤ 0

⎫⎪⎪⎬
⎪⎪⎭

{
0 ≤ i ≤ 9,
1 ≤ c ≤ 255

} {
1 ≤ i ≤ 10,
1 ≤ c ≤ 255

}

Fig. 12.6. Fixpoint calculation using widening with landmarks.

unsatisfiable inequalities. The rationale for widening with landmarks is to find
these fixpoints by systematically considering the inequalities that prevent a
behaviour from being enabled. These inequalities are exactly those inequalities
in the semantic equations that are unsatisfiable in the context of the current
iterate. In the example, the last two behaviours contain the inequalities n ≤ i
(arising from i = n) and n < i that are responsible for enabling the second and
third behaviours. These inequalities are unsatisfiable in Q′

3 and are therefore
stored as landmarks. The leftmost graph in Fig. 12.5 indicates the position of
the two inequalities n ≤ i and n < i, which define the landmarks we record
for R3.
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12.2.3 Creating Landmarks for Widening

A landmark is a triple comprised of an inequality and two distances. On
creation, the first distance is set to the shortest straight-line distance to which
the inequality must be translated so as to touch the current iterate. In this
example, translations by 10 and 11 units are required for n ≤ i and n < i,
respectively, to touch R3.

In the seventh iteration, when Rj is updated again, a second measurement
is taken between the inequality and the new iterate. This distance is recorded
as the second distance in the existing landmark. In the example, the second
distance for n ≤ i and n < i is set to 9 and 10 units, respectively.

By iteration 8, both landmarks have acquired a second measurement; how-
ever, it is not until widening is applied in iteration 10 that the landmarks are
actually used. The difference between the two measurements of a particular
landmark indicates how fast the iterates Rj are approaching the as yet un-
satisfiable inequality of that landmark. From this difference, we estimate how
many times Rj must be updated until the inequality becomes satisfiable. In
the example, the difference in distance between the two updates R3 and R7 is
one unit for each landmark. Thus, at this rate, Rj would be updated nine more
times until the closer inequality, namely n ≤ i, becomes satisfied. Rather than
calculating all these intermediate iterates, we use this information to perform
an extrapolation step when the widening point Q is revisited.

12.2.4 Using Landmarks in Widening

From the perspective of the widening operator, the task is, firstly, to gather all
landmarks that have been generated in the traversal of the cycle in which the
widening operator resides. Secondly, the widening operator ranks the land-
marks by the number of iterations needed for the corresponding inequality
to become satisfied. Thirdly, the landmark with the smallest rank determines
the amount of extrapolation the widening operator applies. In the example,
recall that the unsatisfiable inequality n ≤ i in R7 would become satisfi-
able after nine more updates of R, whereas the other unsatisfiable inequal-
ity n < i becomes satisfiable after ten updates. Hence, n ≤ i constitutes
the nearest inequality and, rather than applying widening when calculating
Q10 = Q9∇(P9 �N U9), extrapolation is performed. Specifically, the changes
between Q9 = {0 ≤ i ≤ 1} and P9 �N U9 = {0 ≤ i ≤ 2} are extrapolated nine
times to yield Q10 = {0 ≤ i ≤ 10}. The new value of Q10 forces a reevaluation
of R, yielding R11, as shown in Fig. 12.6. In the next iteration, the semantic
equation for T yields {0 ≤ i, 1 ≤ c ≤ 255, 255i + c ≤ 2550}. By applying
integral tightening techniques discussed in Chap. 8, this polyhedron is refined
to the entry T12, as shown in the table. A final iteration leads to a fixpoint.

Note that it is possible to apply extrapolation as soon as a single land-
mark acquires its second measurement. However, to ensure that the state is
extrapolated only to the point where the first additional behaviour is enabled,
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Algorithm 10 Adding or tightening a landmark.
procedure updateLandmark(N, ι, L), N ∈ Num, ι ∈ Ineq , L ⊆ Lin ×Z× (Z∪{∞})
1: e ≤ c ← ι
2: c′ ← minExp(N, e)
3: if c < c′ then /* N �N {ι} is empty */
4: dist ← c′ − c /* calculate the distance between N and e = c */
5: if ∃distc, distp . 〈e, distc, distp〉 ∈ L then
6: return (L \ {〈e, distc, distp〉}) ∪ {〈e, min(dist , distc), distp〉}
7: else
8: return L ∪ {〈e, dist ,∞〉}
9: end if

10: end if
11: return L

the extrapolation step should be deferred until all landmarks have acquired
their second value; that is, when no new landmarks were created in the last
iteration. Observe that new landmarks cannot be added indefinitely, as at
most one landmark is created for each inequality that occurs in the semantic
equations, which are in turn finite.

The following sections formalise these ideas by presenting algorithms for
gathering landmarks and performing extrapolation using landmarks.

12.3 Acquiring Landmarks

This section formalises the intuition behind widening with landmarks by giving
a more algorithmic description of how landmarks are acquired. Algorithm 10
presents updateLandmark , which is invoked whenever a state N is inter-
sected with an inequality ι that arises from a semantic equation. In line 2,
the distance between the boundary of ι and N is measured by calculating
c′ = minExp(N, e). Intuitively, e ≤ c′ is a parallel translation of ι that has
a minimal intersection with N . Line 3 compares the relative location of ι
and its translation, thereby ensuring that lines 4 to 9 are only executed if
ι is unsatisfiable and thus can yield a landmark. If ι is indeed unsatisfiable,
line 4 calculates its distance to N . Given this distance, line 5 determines if a
landmark is to be updated or created. An update occurs whenever different
semantic equations contain the same unsatisfiable inequality. In this case, line
6 ensures that the smaller distance is stored in the landmark. The rationale
for storing the smaller distance is to choose the closer inequality as the land-
mark. In particular, if extrapolation to the closer inequality does not lead to
a fixpoint, the closer inequality is satisfiable in the extrapolated space and
cannot induce a new landmark. At this point, the inequality that is farther
away can become a landmark. Hence, tracking distances to closer inequali-
ties ensures that all landmarks are considered in turn. When creating a new
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clear all landmarks

calc no. of iterations

+

stable?

steps>0
yesno

no

yes

Fig. 12.7. Operations performed at a widening point.

Algorithm 11 Advance a landmark.
procedure advanceLandmarks(L), L ⊆ Lin × Z × (Z ∪ {∞})
1: L′ ← {〈e, distc, distc〉 | 〈e, distc, distp〉 ∈ L}
2: return L′

landmark, line 8 sets the second distance to infinity, which indicates that this
new landmark is not yet ready to be used in extrapolation.

The next section details how the acquired landmarks are manipulated.

12.4 Using Landmarks at a Widening Point

The semantic equations of the program induce cyclic dependencies between
the states at each program point. A widening point must be inserted into each
cycle to ensure that the fixpoint computation eventually stabilises. In the case
of nested cycles, a fixpoint is calculated on each inner cycle before moving on
to the containing cycle [34]. Figure 12.7 schematically shows the actions taken
when a semantic equation at a widening point is evaluated. If stability has not
yet been achieved, all landmarks gathered in the current cycle (excluding those
in inner cycles) are passed to the algorithm calcIterations, which estimates
the number of times the cycle needs to be traversed until a state is reached at
which the first as yet unsatisfiable inequality becomes satisfiable. This count
is denoted as steps in Fig. 12.7. Two special values are distinguished: 0 and
∞. A value of zero indicates that new landmarks were created during the
last traversal of the cycle. In this case, the left branch of Fig. 12.7 is taken
and the algorithm advanceLandmarks, which is presented in Alg. 11, is called.
Normal fixpoint computation is then resumed, allowing landmarks to acquire
a second measurement. The call to advanceLandmarks propagates the most
recently calculated distance to the third element of each landmark so that
updateLandmark can update the second element of the landmark tuple during
the next iteration.
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Algorithm 12 Calculate required extrapolation steps.
procedure calcIterations(L), L ⊆ Lin × Z × (Z ∪ {∞})
1: steps ← ∞ /* indicate that normal widening should be applied */
2: for 〈e, distc, distp〉 ∈ L do
3: if distp = ∞ then
4: steps ← 0
5: else if distp > distc then
6: if steps = ∞ then
7: steps ← �distc/(distp − distc)�
8: else
9: steps ← min(steps, �distc/(distp − distc)�)

10: end if
11: end if
12: end for
13: return steps

The right branch of Fig. 12.7 is selected whenever calcIterations returns a
non-zero value for steps, which indicates that all landmarks have acquired two
measurements. This is the propitious moment for extrapolation, as only now
can all landmarks participate in predicting the number of cycles until the first
as yet unsatisfiable inequality is reached. Algorithm 12 shows how this number
is derived. The function calcIterations calculates an estimate of the number
of iterations necessary to satisfy the nearest landmark stored in steps. This
variable is initially set to ∞, which is the value returned if no landmarks have
been gathered. An infinite value in steps indicates that widening, rather than
extrapolation, has to be applied. Otherwise, the loop in lines 2–12 examines
each landmark in turn. For any landmark with two measurements (i.e., those
for which distp �= ∞), lines 7–8 calculate the number of steps after which the
unsatisfiable inequality that gave rise to the landmark 〈e, distc, distp〉 becomes
satisfiable. Specifically, distp − distc represents the distance traversed during
one iteration. Given that distc is the distance between the boundary of the
unsatisfiable inequality and the polyhedron in that iteration, the algorithm
computes �distc/(distp − distc)� as an estimate of the number of iterations
required to make the inequality satisfiable. This number is stored in steps
unless another landmark has already been encountered that can be reached
in fewer iterations. If steps = ∞, no landmark has been found so far towards
which the state space grows and steps is always set.

The next section presents an algorithm that extrapolates the change be-
tween two iterates by a given number of steps. It thereby completes the suite
of algorithms necessary to realise widening with landmarks.
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Algorithm 13 Extrapolate the change between P1 and P1 �P P2.
procedure extrapolate(P1, P2, steps), P1, P2 ∈ Poly , steps ∈ N ∪ {∞}
1: [[{ι1, . . . ιn}]] ← P1 /* ι1, . . . ιn is a non-redundant description of P1 */
2: P ← P1 �P P2

3: if steps = 0 then
4: return P
5: else
6: Ires ← ∅
7: for i = 1, . . . n do
8: e ≤ c ← ιi

9: c′ ← minExp(P, e)
10: if c′ ≤ c then
11: Ires ← Ires ∪ {e ≤ c} /* since P �P [[ιi]] */
12: else if steps �= ∞ then
13: Ires ← Ires ∪ {e ≤ (c + (c′ − c)steps)}
14: end if
15: end for
16: return Ires
17: end if

12.5 Extrapolation Operator for Polyhedra

In contrast to standard widening, which removes inequalities that are unsta-
ble, extrapolation by a finite number of steps merely relaxes inequalities until
the next landmark is reached. Algorithm 13 presents a simple extrapolation
algorithm that performs this relaxation based on two iterates, namely P1 and
P2 ∈ Poly . This extrapolation is applied by replacing any semantic equation
of the form Qi+1 = Qi∇(Qi �P Ri) with Qi+1 = extrapolate(Qi, Ri, steps),
where steps = calcIterations(L) and L is the set of landmarks relevant to
this widening point. Thus the first argument to extrapolate, namely P1, cor-
responds to the previous iterate Qi, while P2 corresponds to Ri. Line 2 cal-
culates the join P of both P1 and P2, which forms the basis for extrapolating
the polyhedron P1. Specifically, bounds of P1 that are not preserved in the
join are extrapolated. The loop in lines 7–15 implements this strategy, which
resembles the original widening on polyhedra [62], which can be defined as
Ires = {ιi | P �N [[{ιi}]]}, where ι1, . . . ιn is a non-redundant set of inequali-
ties such that [[{ι1, . . . ιn}]] = P1; see [10]. Note that this widening might not be
well defined if the dimensionality of P1 is smaller than that of P = P1 �N P2;
other inequalities from P can be added to Ires to remedy this [10, 91]. The
latter is not necessary in the context of the TVPI domain when implemented
as a reduced product of intervals and TVPI inequalities due to the unique
representation of planar polyhedra; see Sect. 8.2.5.

The extraction of stable inequalities in the definition of Ires is implemented
as follows. The entailment check P �N [[{ιi}]] for ιi ≡ e ≤ c is implemented
in line 9 by calculating the smallest c′ such that P �N [[{e ≤ c′}]]. If c′ ≤ c,
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Fig. 12.8. Illustrating non-linear growth.

the entailment holds and line 11 adds the inequality to the result set. If the
entailment does not hold, the inequality is discarded whenever steps = ∞.
In this case, extrapolate reduces to a simple widening. If steps is finite, line
13 translates the inequality, thereby anticipating the change that is likely to
occur during the next steps loop iteration.

The algorithm presented performs a linear translation of inequalities. Since
array accesses are typically linear, this approach is well suited for verifying
that indices fall within bounds. However, a non-linear relationship such as
that arising in the C loop ��� i=1; ���(��� y=1; y<8; y=y*2) i++; is not
amenable to linear extrapolation and thus leads to a loss of precision. The loop
creates successive values for i, y that correspond to the points 〈1, 1〉, 〈2, 2〉,
〈3, 4〉, and finally, at the exit of the loop, the point 〈4, 8〉. These are indicated
as crosses in the left graph of Fig. 12.8. The best polyhedral approximation
of these points restricted by the loop invariant y < 8 is shown in dark grey.
However, extrapolating the first two iterates, namely the polyhedron {〈1, 1〉}
and the polyhedron that additionally contains 〈2, 2〉, predicts that the shown
landmark y ≥ 8 becomes satisfiable after seven additional loop iterations. The
extrapolation results in the polyhedron depicted as a dashed line; continuing
with the fixpoint calculation leads to the light grey area for the state within
the loop, which is a coarser approximation than the optimal polyhedron, which
is depicted as the dark grey area.

A loss of precision also occurs in the case of sub-linear growth as in the loop
��� i=1; ���(��� y=8; y>0; y=y>>1) i++;, shown in the right graph. Af-
ter intersecting the extrapolated state with y > 0 and performing integral
tightening, the estimated state for the loop body will merely include the in-
correct point 〈2, 1〉 in addition to the best abstraction, shown in dark grey.
However, in this case the linear extrapolation is too conservative and the exit
condition of the loop becomes satisfied, although the state space within the
loop has not yet stabilised. In this case, normal widening might be applied,
thereby incurring an even greater precision loss. Note that termination of
widening with landmarks is guaranteed in both cases.
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Fig. 12.9. Standard widening versus revised widening.

12.6 Related Work

Although the foundations of widening and narrowing were laid three decades
ago [55], the value of widening was largely unappreciated until comparatively
recently [59]. In the last decade, there has been a resurgence of interest in
applying polyhedral analysis and, specifically, polyhedral widenings [10,25,28].
The original widening operator in [62] discards linear relationships that result
from joining the state of the previous loop iteration with the current loop
iteration. This causes a loss of precision, especially when widening is applied
in each loop iteration. In order to illustrate this shortcoming, consider the
polyhedron P1 = [[{x = 1, y = 1}]] in the first graph of Fig. 12.9. Assuming
that this polyhedron changes to P2 = [[{x = 2, y = 2}]] after executing the
loop body, an over-approximation of the loop invariant can be calculated by
widening P1 with respect to P1 �P P2, the latter being depicted in the second
graph. The original widening will calculate P ′ = P1∇(P1 �P P2) = [[{x ≥
1, y ≥ 1}]], shown in the third graph. This result is imprecise in that the linear
relationship x = y, which is present in P1 �P P2, is not included in P ′. The
so-called revised widening [91] remedies this by adding additional inequalities
from the join P1 �P P2 that fulfill certain properties. In the example, the
equality x = y can be added to P ′, yielding the polyhedron depicted in the
fourth graph of Fig. 12.9. Given that checking whether an inequality from the
join can be added to P ′ is expensive, it is interesting to note that Benoy [25]
showed that no inequalities need to be added if the dimensionalities of the
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Fig. 12.10. Improved widening from polytopes to polyhedra.

two polyhedra are the same. This observation is interesting in the context of
the TVPI domain when widening with landmarks is applied. Since gathering
landmarks requires the analysis of at least two loop iterations, the planar
polyhedra that are widened are likely to have the same dimension since the
topological dimension of a planar polyhedron can be at most two.

Besson et al. [28] present widenings that are especially precise when widen-
ing polytopes into polyhedra. For instance, the iterates shown in Fig. 12.10
feature an inequality with changing coefficients that standard widening would
remove. Instead, this inequality is widened to y ≥ 0, thereby retaining a
lower bound on y. Extending our extrapolation function to include inequal-
ities with changing coefficients is an interesting research question. Bagnara
et al. [10] combine the techniques of Besson et al. and other widenings with
extrapolation strategies that delay widening. More closely related is work on
extrapolation using information from the analysed equation system. For in-
stance, widening with thresholds [30] uses a sequence of user-specified values
(thresholds) on individual variables up to which the state space is extrapo-
lated in sequence. Halbwachs et al. [93] deduce thresholds automatically from
guards in the semantic equations. However, they observe redundant inequal-
ities rather than unsatisfiable inequalities, thereby possibly extrapolating to
thresholds where no fixpoint can exist, such as redundant inequalities that ex-
press verification conditions. The restriction of inferring thresholds on single
variables is lifted by lookahead widening, which uses standard widening and
narrowing operators and thereby is able to find bounds that are expressed
with more than one variable [81]. It uses a pilot polyhedron on which widen-
ing and narrowing are performed alongside a main polyhedron. Once the pilot
value has stabilised after narrowing, it is promoted to become the main value.
By using the main value to evaluate effects in other domains, the problems
of domain interaction as discussed in the introduction of this chapter do not
occur. Furthermore, by discarding behaviours that are enabled after widen-
ing but are disabled with respect to the main value, lookahead widening is
able to find fixpoints in which not all behaviours are enabled, as is the case
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in the example on string buffers. While lookahead widening solves essentially
the same problem as widening with landmarks, the analysis operates on two
polyhedra instead of one. In many cases, the pilot and main value coincide
such that only a single polyhedron needs to be propagated, which reduces the
overhead of using two polyhedra.

The need for a pilot polyhedron can be refined by temporarily removing
all unsatisfiable behaviours from equation systems [82]. The idea is to find
a fixpoint using widening and narrowing only on the enabled behaviours.
Once a fixpoint is found, behaviours are enabled and another iteration is
performed. Again, behaviours that are still disabled are removed and another
widening/narrowing cycle is performed. One of the downsides of this approach
is the complexity of the implementation when behaviours are not branches in
the control-flow graph but part of the abstract transfer functions of statements
as in the string buffer example. Note that both approaches require a narrowing
step for full precision. Implementing narrowing in an analyser can require
a substantial implementation effort. For instance, the authors of lookahead
widening point out that narrowing was not implemented in their WPDS++
tool, as it would have required a major redesign [81].

Further afield is the technique of counterexample-driven refinement, which
has recently been adapted to polyhedral analysis [89]. This approach is
in some sense orthogonal to narrowing that refines a single fixpoint. In
counterexample-driven refinement, the fixpoint computation is repeatedly
restarted, guided by a backwards analysis from the point of a false warning to
some widening point. Finally, it has been shown that widening and narrowing
can be avoided altogether in a relational analysis if the semantic equations
are affine [177]. Incredibly, for this restricted class of equations, least fixpoints
can be found in polynomial time.
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Combining Points-to and Numeric Analyses

This chapter addresses a loss of precision that is due to the lack of interac-
tion between the numeric domain and the points-to domain. Chapter 11 on
string buffer analysis demonstrated that, within the domain of polyhedra, an
invariant such as p < n (the access position lies in front of the nul position)
can be recovered through the relational information in the domain merely by
intersection with the loop invariant c �= 0 (the read character is not nul).
Since no relational information exists between the polyhedral domain and the
points-to domain, the intersection with loop invariants cannot recover any
information in the points-to domain. This deficiency can compromise preci-
sion, as demonstrated by the following example, which is a modification of
the running example in the chapter on string buffer analysis:

���� *p;
���� t[16] = "Aero";
���� v[8] = "boat";
���� *u = "plane�";
p = t+4;
�� (rand ()) u = &v;
����	 (*p=*u) { p++; u++; };
printf("t�=� ’%s ’\n", t);

The difference from the original example lies in the conditional statement
�� (rand()), which, depending on a random number, updates the pointer u
to point to the string buffer v. Thus, during the analysis of the ����	-loop,
the pointer u has a points-to set of {ap, av}, where ap denotes the abstract
address of the buffer containing "plane�" and av denotes the address of v.
Hence, whenever the read access *u is evaluated, the analysis evaluates each
buffer access separately and joins the results. Suppose that c denotes the result
of the read access *u. The first graph in Fig. 13.1 shows the value of c with
respect to the pointer offset u when dereferencing the abstract address ap;
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Fig. 13.1. Finding the nul position on more than one buffer at a time is impossible
without stating that a points-to set changes from a certain iteration onwards.

the second graph shows values of c when accessing v. The loss of precision
becomes apparent in the third graph, which depicts the join of the first two
graphs. While the join still expresses that c is zero and thus that the loop
exits at u = 4, the information that the loop only exits if *u accesses v is
lost. Worse, since av is not removed from the points-to set of u, subsequent
iterations still read from the buffer v even though u cannot point to v for loop
iterations with u > 4. As a result, the analysis assumes that *u accesses v past
the first known nul position so that c remains non-zero even at u = 6, where
the nul position of the string constant "plane�" is reached. Hence, it is not
possible to infer that the loop always terminates at u = 6, and a warning is
raised that the string buffers "plane�" and "boat" accessed out-of-bounds.

In order to prove the correctness of the example above, the analysis must
be able to express that *u does not access the buffer v once the pointer offset
of u exceeds 4.1 If this fact can be inferred in loop iterations u > 4, only the
string constant "plane�" would be read when evaluating *u and a fixpoint
could be detected at u = 6. Relating the content of the points-to set of u to
the pointer offset u can only be accomplished by introducing a relationship
in the polyhedral domain. Specifically, the idea is to keep Boolean variables
in the polyhedron that indicate if a specific abstract address is present in the
points-to set of a variable. In this chapter, we will describe how a vector of
Boolean flags is kept for each pointer-sized variable, where each flag in the
vector is an abstract variable. The value of that variable in the polyhedron
then indicates if an abstract address is part of the points-to set.

The chapter is structured as follows. The next section illustrates the theory
of Boolean flags and how they can be used to improve points-to analysis.
Section 13.2 presents a modification of the analysis in which the presence of
an l-value in a points-to set is governed by a flag in the numeric domain. The
practical implementation and other applications are discussed in Sect. 13.3.
1 Note that this requires inequalities with more than two variables, for which the

TVPI domain is not expressive enough on its own.
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Fig. 13.2. Boolean functions can be expressed exactly in the polyhedral domain
when satisfiable assignments of variables are modelled as vertices in the polyhedron.

13.1 Boolean Flags in the Numeric Domain

An interesting property of polyhedra is that it is possible to express binary
formulas when Boolean truth values are stored as 0 when the variable is
false and as 1 otherwise. For instance, Fig. 13.2 depicts four polyhedra that
model the truth values of common Boolean functions. Moreover, it is possible
to freely mix Boolean variables and variables that represent the ranges of
program variables. In order to illustrate this, consider the evaluation of the
following code fragment when given the state P ∈ Poly :

��� r=MAX_INT;
�� (d!=0) r=v/d;

Suppose this block of code is executed with a value of [−9, 9] for d. Rather
than analysing the division twice, once with positive values of d and once with
negative values of d, Fig. 13.3 shows how the states P+ and P− can be stored
in a single state without introducing an integral point where d = 0. Specifi-
cally, the figure shows the state (P− �P [[f = 0]]) �P (P+ �P [[f = 1]]), which
collapses to the empty Z-polyhedron when intersected with d = 0, where
[[d = 0]] is the state for which the division is erroneous. The prerequisites for
merging two states without loss are that both states be represented by poly-
topes (polyhedra in which all variables are bounded) and that techniques for
integral tightening be present. This is formalised in the following proposition.

Proposition 11. Let P0, P1 ∈ Poly, let P = (P0�P [[f = 0]])�P (P1�P [[f = 1]])
and let P ′

i = P �P [[f = i]] for i = 0, 1. Then Pi �P [[f = i]]∩Zn = P ′
i ∩Zn for

all i = 0, 1.

Proof. Without loss of generality, assume i = 0. Suppose that X is arranged
as 〈x1, . . . xn−1, f〉 = x, which we abbreviate as 〈x̄|f〉 = x. Consider two cases:

“soundness”: Let 〈ā|f〉 ∈ P0�P [[f = 0]]∩Zn. Then 〈ā|f〉 ∈ P by the definition
of �P . Since f = 0 in 〈ā|f〉, it follows that 〈ā|f〉 ∈ P �P [[f = 0]] and
thus 〈ā|f〉 ∈ P ′

0. We chose the vector such that 〈ā|f〉 ∈ Zn and hence
〈ā|f〉 ∈ P ′

0 ∩ Zn.
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Fig. 13.3. Using a Boolean flag to perform control-flow splitting. Feasible integral
points are indicated by crosses, the dashed line indicating the polyhedron [[d = 0]].

“completeness”: Let 〈ā|f〉 ∈ P ′
0 ∩ Zn. Then 〈ā|f〉 ∈ P �P [[f = 0]] and hence

f = 0. For the sake of a contradiction, suppose that 〈ā|0〉 /∈ P0. Since
P ∈ Poly is convex, 〈ā|0〉 = λ〈ā1|f1〉+ (1−λ)〈ā2|f2〉 for some 0 ≤ λ ≤ 1.
Observe that the join P = (P0�P [[f = 0]])�P (P1�P [[f = 1]]) is defined as
an intersection of all states P̂ such that (Pi �P [[f = i]]) �P P̂ for i = 0, 1;
this holds in particular for P̂ = [[f ≥ 0]] and P̂ = [[f ≤ 1]]. Thus, 0 ≤ f ≤ 1
for all 〈ā|f〉 ∈ P . Hence, 0 ≤ f1 ≤ 1 and 0 ≤ f2 ≤ 1 must hold. Given the
constraints 0 = λf1 + (1 − λ)f2 and ā = λā1 + (1 − λ)ā2, either f0 = 0
or f1 = 0 so that one vector, say 〈ā1|f1〉, must lie in P0, which implies
λ = 1. In particular, with ā = λā1 + (1 − λ)ā2 and ā2 ∈ Zn−1 having
only finite coefficients, ā = ā1 follows, which contradicts our assumption
of 〈ā|0〉 /∈ P0.

We briefly comment on the requirements of P0, P1 being polytopes and how
integral tightening methods affect the precision of Boolean flags.

13.1.1 Boolean Flags and Unbounded Polyhedra

With respect to the first requirement, namely that the polyhedra that describe
the state space must be bounded, Fig. 13.4 shows that a precision loss occurs
for unbounded polyhedra. Specifically, taking convex combinations of points in
the state P+ = [[{d ≥ 1, f = 1}]] and those in P− = [[{−9 ≤ d ≤ −1, f = 0}]]
leads to the grey state. Even though the line [[{f = 0, d > −1}]] is not part
of the grey state, the polyhedral join P+ �P P− approximates this state with
sets of non-strict inequalities, thereby including the line. Hence, the definition
of �P automatically closes the resulting space and thereby introduces points
〈ā, f〉 ∈ P+�P P−, where f = 0, even though 〈ā, 0〉 /∈ P+. Note that allowing
strict inequalities a · x < c [12] cannot counteract this precision loss, as the
state P+ �P P− cannot be described exactly, even when allowing both strict
and non-strict inequalities.

The imprecise handling of unbounded polyhedra is generally not a problem
in verifiers that perform a forward reachability analysis, as program variables
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Fig. 13.4. Unbounded polyhedra cannot be fully distinguished using a Boolean flag.

are usually finite and wrap when they exceed their limit. Making wrapping ex-
plicit as proposed in Chap. 4 effectively restricts the range of a variable. Thus,
states in a forward analysis are usually bounded. Polyhedra have also been
used to infer an input-output relationship of a function, thereby achieving a
context-sensitive analysis by instantiating this input-output behaviour at var-
ious call sites [83]. In this application, the inputs are generally unbounded and
a Boolean flag does not distinguish any differences between states. However,
even in this application it might be possible to restrict the range of input vari-
ables to the maximum range that the concrete program variable may take on,
thereby ensuring that input-output relationships are inferred using polytopes.

13.1.2 Integrality of the Solution Space

A second prerequisite for distinguishing two states within a single polyhedron
is that the polyhedron be reduced to the contained Z-polyhedron upon each
intersection. Tightening a polyhedron to a Z-polyhedron is an exponential
operation, which can be observed by translating a Boolean function f over
n variables to a Z-polyhedron over Zn by calculating the convex hull of all
Boolean vectors (using 0 and 1 for false and true, respectively) for which f
is true, as shown in Fig. 13.2 for n = 2. An argument similar to Prop. 11 is
possible to show that joining all n-ary vectors for which f is true leads to a
polyhedron that expresses f exactly. The integral meet operation �Z

P there-
fore becomes a decision procedure for satisfiability of n-ary Boolean formulas.
As an interesting consequence, observe that octagons [130] together with the
complete algorithm for �Z

P presented in [13] provide an efficient decision pro-
cedure for 2-SAT.

While calculating a full Z-polyhedron from a given polyhedron with ratio-
nal intersection points is expensive, a cheap approximation often suffices in
practice. For instance, the abstract transfer function of the division operation
will add the constraint d = 0 to the state space shown in Fig. 13.3, with the
result that possible values of f lie in [0.1, 0.9]. Rounding the bounds to the
nearest feasible integral value yields the empty interval [1, 0], which indicates
an unreachable state, thereby proving that a division by zero cannot happen.

We now point out an application where using Boolean flags seems to be a
good compromise between cost and precision.
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13.1.3 Applications of Boolean Flags

In general, an analysis using a polyhedron over Zn+1, where dimension n + 1
is a Boolean variable, may be as expensive as or even more expensive than
the same analysis using two individual polyhedra over Zn. However, in cases
where the behaviour of the two branches is identical, the polyhedron will be
invariant to the Boolean flag f and the overhead of storing the constraint
0 ≤ f ≤ 1 will be negligible. In practice, a behaviour somewhere in between
these two extremes is likely. In the context of the polynomial TVPI domain,
adding a Boolean flag in order to split a path is always faster than analysing
the path twice. On the downside, TVPI inequalities can only express that
the range of one variable changes with respect to a Boolean flag; that is, it
cannot be stated that a relationship between two variables changes. However,
we found that even TVPI inequalities are valuable to express certain idioms
in C. Suppose the flag xp indicates if the pointer p points to s in the following
block of code:

������ s;
��� f(����	� s **p) {

�
 (rand ()) ������ 1; /* error */

*p = &s; ������ 0; /* success */

}

The purpose of the function f is to calculate a result and return a pointer
to one of many global structures on success, in which case the constant one
is returned. If the actual parameter passed to f is not initialised, then p can
take on any value in the range [0, 232− 1] if one is returned. This and the fact
that (the offset of) p is zero if zero is returned can readily be inferred by the
analysis. However, f is likely to be called as follows:

����	� s *p;
��� r;
r = f(&p);
�
 (!r) printf("value:�%x", *p);

While it is known that the offset of p is zero if the return value is zero, it
is also necessary to know that p definitely points to s and is not NULL. Setting
the Boolean flag xp to one iff p contains the address of s is sufficient to convey
this information. In particular, the analysis of f infers that xp = −xr, where
xr is the return value. Thus, testing that r is zero restricts the points-to set
of p as expected. In other words, introducing Boolean flags to state whether a
certain address is in the points-to set of a variable is a particularly expressive
way to make a (possibly flow-insensitive) points-to analysis flow-sensitive.
The next section shows how the presented idea is implemented in our analysis.
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13.2 Incorporating Boolean Flags into Points-to Sets

In this section, we detail how to extend the analysis to use Boolean flags
in the numeric domain that model the content of points-to sets. With each
pointer-sized field whose value is represented by some abstract variable x ∈ X ,
we associate a vector of Boolean flags 〈f1, . . . fn〉, where each fi ∈ X . Here,
n = |A|; that is, with each pointer-sized field, the polyhedron also tracks |A|
abstract variables that represent the flags. The idea is to set the flag fi of
the field x to one whenever the points-to set of x includes the ith abstract
address and to set fi = 0 otherwise. In this new model, the points-to domain
is redefined to Pts = X → X |X |. In particular, A ∈ Pts assigns a vector of
Boolean flags f = A(x) to each pointer-sized field x. For all other abstract
variables, the map A is undefined. For the sake of a simpler presentation, we
assume that the set of pointer-sized fields and that of abstract addresses A
is fixed such that A is fixed. Section 13.3 will detail how to infer these sets
on-the-fly, thereby also reducing the number of flag variables.

In the remainder of this section, we shall present the necessary modifica-
tions to the analysis. After revising the functions on access trees and present-
ing the read and write functions in Sect. 13.2.1, we hint at the required changes
to the abstract semantics by presenting the transfer functions for expressions
and assignments in Sect. 13.2.2. In order to unveil the full expressiveness of
the new abstraction, Sect. 13.2.3 discusses the semantics of conditionals.

13.2.1 Revising Access Trees and Access Functions

While the switch to a new way of tracking points-to sets affects most parts of
the analysis presented so far, the propagation functions for overlapping fields
remain unchanged, as they only deal with value fields. Figure 13.5 depicts
the changed functions for managing l-values in access trees. A new function
hasLValsA : ({1, 2, 4, 8} × AT × Num) → {true, false} determines if a given
field holds a pointer variable. Most cases simply ascend or descend towards the
4-byte, pointer-sized field. Once there, it is tested if x is a value, which is the
case when all points-to flags 〈f1, . . . fn〉 = A(x) are zero in N . The test pro-
ceeds by intersecting N with the assumption and checking that the state has
not gotten smaller. The functions getLValsA and setLValsA are only defined
on access trees that pivot in a pointer-sized field. In particular, getLValsA

merely returns the vector of flags A(x), while setLValsA uses the notation
N � A(x) := f as shorthand for assigning each individual flag in f to those
returned by A(x). The two functions getOfs and setOfs remain unchanged
from Fig. 5.4 on p. 102 and are thus omitted here. The last function on access
trees is clearF,A, which is applied before accessing a field that overlaps with a
pointer. The function recurses until the pointer-sized field is the pivot node.
As in the case of hasLValsA, it is tested if the points-to set of x is empty –
that is, if all points-to flags are zero in N . If not, the value of the pointer-sized
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x0 , N) = hasLValsA(2s,
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x1 , N), s ≤ 2

hasLValsA(s,

tu

x1

x0 , N) = hasLValsA(2s,
tu

x1 , N), s ≤ 2

hasLValsA(4, x , N) = N �N N �N {f1 = 0, . . . fn = 0}
where 〈f1, . . . fn〉 = A(x)

hasLValsA(8, x0

x1 x2

, N) = hasLValsA(4, x1 , N)

∨ hasLValsA(4, x2 , N)

hasLValsA(s, εAT , N) = false

getLValsA( x ) = A(x)

setLValsA(f , x , N) = N � A(x) := f

clearF,A(s,

tu

x1

x0 , N) = clearF,A(2s,
tu

x1 , N), s ≤ 2

clearF,A(s,

tu

x1

x0 , N) = clearF,A(2s,
tu

x1 , N), s ≤ 2

clearF,A(4, x , N) = let 〈f1, . . . fn〉 = A(x) in

if N �N N �N {f1 = 0, . . . fn = 0} then N else
∃x(N) �N {0 ≤ x < 232} � f0 := 0 . . . � fn := 0

clearF,A(8, x0

t1 t2
, N) = let N ′ = clearF,A(4, t2 , N)

in clearF,A(4, t1 , N ′)

clearF,A(s, εAT , N) = N

Fig. 13.5. Revised functions for setting and getting l-values. The variable tu rep-
resents a wider tree than the dotted borders suggest.

field is set to its maximum bounds, thereby interpreting the set of l-values as
a pure value. Note that the overlapping fields do not have to be set to their
maximum value, as this is done by setOfs when setting the l-values of x.

The functions on access trees are invoked by the read and write functions
presented in Figure 13.6. For brevity, we do not show the wrapper function
readF,H,A : M ∪ D × Lin × {1, 2, 4, 8} × Num → Num × X × X |X |, which
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readChkF,A(m, [l, u]≡d, s, N) = 〈
⊔n

i=0 Ni � x := xi � f := f i, x, f〉
where x ∈ X T , f ∈ XT |A|

fresh
{at1, . . . atn} =

⋃
o∈{l,l+d,...u} accessF (o, s, m)

〈Ni, xi, f i〉 = readTreeA(s, ati, N), i ∈ [1, n]

readTreeA(s, at, N) = 〈N ′, x, f〉
where if hasLValsA(s, at, N) then

if s = 4 then 〈N, getOfs(at), getLValsA(at)〉
else 〈N �N {0 ≤ t < 28s}, x,0〉, t ∈ XT fresh

else 〈N ′, x,0〉 where 〈N ′, x〉 = prop(s, at, N)

writeChkF,A(m, [l, u]≡d, s, ev, f , N) =
⊔n

i=1 writeTreeA(s, ev, f , ati, N)
where {at1, . . . atn} =

⋃
o∈{l,l+d,...u} accessF (o, s, m)

writeTreeA(s, ev, f , at, N) =
if s = 4 then if N �N N{f0 = 0, . . . fn = 0}

then update(s, ev, at, N)
else setOfs(s, ev, at, setLValsA(f , at, N))

else update(s, ev, at, clearF,A(s, at, N))

Fig. 13.6. Accessing abstract memory regions.

can be derived in a straightforward way by omitting the points-to domain
A in the definition of readF,H on p. 103. The same holds for the wrapper
writeF,H,A : M∪D × Lin × {1, 2, 4, 8} × X × X |X | × Num → Num. In both
cases, a vector f ∈ X |X | replaces the points-to set in the original definition.

The function 〈N ′, x, f〉 = readChkF,A(m, [l, u]≡d, s, N) performs the actual
read access by calculating a value x and a vector of points-to flags f that
indicates to which l-values x is the offset. Specifically, the function calculates
the possible access trees from the given interval [l, u]≡d, calls readTreeA on
each tree, and joins the results. In readTreeA, the predicate hasLValsA is used
to check if the access tree overlaps with a field that contains a pointer. If
so, the offset and points-to flags are read if the field is as wide as a pointer;
otherwise, a safe range 0 ≤ x ≤ 28s and the points-to set 0 (representing NULL)
is returned. If the access tree does not cover a field with points-to information,
prop is called on each tree in order to propagate information from overlapping
fields. On return, readChkF,A sets the result variable x to the pivot node of
each access tree and joins the resulting states.

Analogously, evaluating N ′ = writeChkF,A(m, [l, u]≡d, s, ev, f , N) calcu-
lates all access trees in the range [l, u]≡d and updates them with the value of
ev and the points-to set f using writeTree. Within writeTree, it is checked if
the points-to set f is NULL, in which case the tree is updated as a value using
update. In the case of a pointer, the l-values are set using setLValsA before
the offset is set by setOfs. If a field is written that is not as wide as a pointer,
the update function is called as before, but any l-values of a potentially over-
lapping pointer field are turned into a value using clearF,A.
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The read and write functions are applied in the next section when defining
the semantics of expressions and assignments between unstructured variables.

13.2.2 The Semantics of Expressions and Assignments

In this section, we present the revised abstract transfer functions for evalu-
ating linear expressions and assignments between variables and pointers. We
omit all other functions, as their definition can be adapted analogously from
those in Chap. 6. Interestingly, tracking flags for the points-to sets of a vari-
able streamlines much of the definition, in particular the evaluation of linear
expressions. For instance, a constant is simply treated as a pure value and a
zero vector for the points-to flags. Figure 13.7 shows that the semantics of a
term is hardly more elaborate. Specifically, once the value x and the vector
of points-to flags f are calculated by readF,H,A, the semantics of the whole
expression is simply given by multiplying the value x by n and multiplying
each of the points-to flags in f . Each result is then added separately to the
remaining expression. Unlike the abstract semantics on p. 117, no warnings
are emitted if a multiple or a negative pointer is calculated. In particular, the
first statement merely assigns the value and the points-to flags to the target.
Warnings are only emitted whenever a pointer is dereferenced, as demon-
strated in the last two semantic functions, which write through a pointer and
read from a pointer.

Both accesses through pointers use an auxiliary function derefForMem
that calculates, for each possible memory region mi, a state Ni, in which the
corresponding flag fi is set. If fi = 1 is not feasible in the passed-in state, the
returned domain Ni is itself bottom. Before we detail derefForMem, observe
that writing through a pointer reduces to a join of the different states that
represent the result of each write. Similarly, a write access through a pointer
merely calculates the join of possible right-hand sides by assigning the result
to the temporary value xt and the temporary points-to vector f t.

In order to unravel the definition of derefForMem, observe that the three
states N ′, N ′′, and N ′′′ are consecutive refinements of the input state N
calculated by removing state space that indicates an erroneous pointer oper-
ation. For instance, it is guaranteed in N ′ that the pointer variable contains
no negation of an address by intersecting N with fi ≥ 0. Furthermore, the
restriction f1 + . . .+fn ≤ 1 ensures that the pointer variable contains at most
one l-value at a time and not, say, the sum of two pointers or a multiple of one
pointer. Symmetrically, N ′′ is calculated by enforcing that at least one flag
is one, thereby ensuring that the dereferenced pointer cannot be NULL in the
actual program. The next line defines the indices k1, . . . km that correspond
to abstract addresses of functions. These flags are restricted to zero in N ′′′,
thereby ensuring that the pointer access does not write to or read from the
program code. Finally, the memory region mi for each abstract address ai is
returned together with the domain Ni, in which the ith flag is restricted to
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Expressions.

[[ n ]]�,s
ExprN = 〈N, n,0〉

[[ n ∗ v.o + exp ]]�,s
ExprN = 〈N ′′, nx, n · f + f ′〉

where 〈N ′, x, f〉 = readF,H,A(v, o, s, N)

〈N ′′, e, f ′〉 = [[ exp ]]�,s
ExprN

′

Assignments.

[[ s v.o = exp ]]�StmtN = ∃XT (N ′′)

where 〈N ′, e, f〉 = [[ exp ]]�,s
ExprN

N ′′ = writeF,H,A(v, o, s, e, f , N ′)

[[ s v → o = exp ]]�StmtN = ∃XT (N ′′′)

where 〈N ′, e, fe〉 = [[ exp ]]�,s
ExprN

〈N ′′, xo, f〉 = readF,H,A(v, 0, 4, N ′)
〈 〈N1, m1〉, . . . 〈Nn, mn〉 〉 = derefForMem(N ′′, f)
N ′′′ =

⊔n
i=1 writeF,H,A(mi, xo + o, s, e, fe, Ni)

[[ s v1.o1 = v2 → o2 ]]�StmtN = ∃XT (N ′′)

where xt ∈ X T , f t ⊆ X T fresh
〈N ′, xo, f〉 = readF,H,A(v2, 0, 4, N)
〈 〈N1, m1〉, . . . 〈Nn, mn〉 〉 = derefForMem(N, f)
〈N ′

i , xi, f i〉 = readF,H,A(mi, xo + o2, s, Ni), i ∈ [1, n]
N ′′ = writeF,H,A(v1, o1, s, xt, f t,

⊔n
i=1 N ′

i � xt := xi � f t := f i)

derefForMem(N, 〈f1, . . . fn〉) = 〈 〈N1, m1〉, . . . 〈Nn, mn〉 〉
where N ′ = N �N {f1 ≥ 0, . . . , fn ≥ 0, f1 + . . . + fn ≤ 1}

N ′′ = N ′ �N {f1 + . . . + fn ≥ 1}
{k1, . . . km} = {i | 〈a1, . . . an〉 = A, ai ∈ AF}
N ′′′ = N ′′ �N {fk1 = 0, . . . , fkm = 0}
〈m1, . . . mn〉 = 〈L−1(a1), . . . L

−1(an)〉 where 〈a1, . . . an〉 = A
Ni = N ′′′ �N {f1 = 0, . . . fi−1 = 0, fi = 1, fi+1 = 0, . . . fn = 0}, i ∈ [1, n]
warn “L-value is not a single pointer.” if N ��N N ′

warn “Dereferencing a NULL pointer.” if N ′ ��N N ′′

warn “Dereferencing a function pointer.” if N ′′ ��N N ′′′

Fig. 13.7. Revised abstract semantics for expressions and assignments.

one. For better precision in the context of the weaker TVPI domain, the other
flags are restricted to zero, which is implicit when using a general polyhedral
domain.

The ability to work with a single domain simplifies most of the abstract
transfer functions. As a by-product, incorporating the points-to domain into
the numeric domain also improves the expressiveness. The next section dis-
cusses the implementation of the conditional statement, which is key in lever-
aging the expressiveness gained into a more precise analysis.
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13.2.3 Conditionals and Points-to Flags

Conditionals in a program are crucial to a static analysis that aims to ver-
ify programs in that they constitute the main way of restricting the state
space and thereby proving the correctness of a program. Indeed, the reason
for expressing the points-to analysis in terms of the numeric domain is to im-
prove the precision of the transfer function of conditionals, which is shown in
Fig. 13.8. While the transfer function looks overwhelming at first, recall that
the previous conditional was defined in terms of a function cond for which only
a few useful cases were given and that ignored certain combinations of points-
to sets and values. In contrast, the revised conditional treats all combinations
precisely using a three-tier approach consisting of cond , which, as before, im-
plements the semantics of an ��-statement; addAddress, which incorporates
the information in the points-to domain into the comparison as offset; and
intersect , which performs wrapping and calculates the actual restriction of
the state space. We shall detail each function in turn.

The transfer function itself evaluates both sides of the condition to a value
and a vector of points-to flags. The latter are then examined to ensure that
the variable does not contain the sum of several pointers or a negated pointer.
The result N ′′′ is passed to cond , which calculates the effect of the comparison
when using the operator op and when using the opposing operator neg(op).

In cond , different combinations of points-to sets are generated. Specifically,
if n = |A| abstract addresses exist, (n+1)2 states are calculated such that Nij

represents the state in which the left-hand side points to ai, and the right-hand
side points to aj where 〈a1, . . . an〉 = A. As a special case, if i or j is zero, the
corresponding points-to set of that side is empty; that is, all points-to flags
are zero. The result of applying the condition is the join over all (n+1)2 states
after calling the addAddress function on each. The two possible addresses ai

and aj are passed into this function as arguments, and the special tag null
is passed if the corresponding side is a pure value.

Before detailing the addAddress function, observe that the intersect func-
tion merely calls wrap on the two linear expressions ex and ey using the type
t s before intersecting the passed-in state N with the constraint ex op ey. This
function forms the building block for the addAddress function.

The addAddress function is defined using four different patterns; the first
matching pattern determines the result. For instance, given two null flags as
l-values of the two sides of the condition, addAddress passes control straight
to intersect . In other cases, an offset is added that reflects the possible value
of the pointer in the concrete program, namely a value between 4096 (the first
location past the first virtual memory page) and 230 + 231 (the 3-GB barrier
above which lie the reserved 1-GB of the operating system). In particular, the
second pattern applies if a pointer on the left side of the condition is compared
with a value. The temporary variable o is restricted to the above-mentioned
range and added to the pointer offset, creating a value of the left-hand side that
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[[ if t s v.o op exp then jump l ; nxt ]]�Next〈N, l0 · · · ls〉 =

{〈∃XT (N then), l0 · · · ls · l〉} ∪ [[ nxt ]]�Next〈∃XT (Nelse), l0 · · · ls〉
where 〈N ′, x, 〈fx

1 , . . . fx
n〉 〉 = readF,H,A(v, o, s, N)

〈N ′′, e, 〈fe
1 , . . . fe

n〉 〉 = [[ exp ]]�,s
ExprN

′

N ′′′ = N ′′ �N{fx
1 ≥ 0, . . . fx

n ≥ 0, fe
1 ≥ 0, . . . fe

n ≥ 0}
�N{fx

1 + . . . + fx
n ≤ 1, fe

1 + . . . + fe
n ≤ 1}

N then = cond(N ′′′, t s, x, 〈fx
1 , . . . fx

n〉, e, 〈fe
1 , . . . f e

n〉, op)

Nelse = cond(N ′′′, t s, x, 〈fx
1 , . . . fx

n〉, e, 〈fe
1 , . . . f e

n〉,neg(op))
warn “L-values are not single pointers.” if N ′′ ��N N ′′′

cond(N, t s, x, 〈fx
1 , . . . fx

n〉, e, 〈fe
1 , . . . fe

n〉, op) = ∃XT (N ′)

where δij =

{
1 if i = j
0 otherwise

Nij = N �N {fx
1 = δi1, . . . f

x
n = δin, fe

1 = δ1j , . . . f
e
n = δnj}, i, j ∈ [0, n]

a0 = null, 〈a1, . . . an〉 = A
N ′ =

⊔
i,j∈[0,n] addAddress(Nij , t s, x, ai, e, aj , op)

addAddress(N, t s, x,null, e,null, op) = intersect(N, t s, x, e, op)
addAddress(N, t s, x, ax, e,null, op) = ∃XT (N ′′)

where N ′ = N �N {4096 ≤ o < 230 + 231}, o ∈ X T fresh
N ′′ = intersect(N ′, t s, x + o, e, op)

addAddress(N, t s, x,null, e, ae, op) = ∃XT (N ′′)
where N ′ = N �N {4096 ≤ o < 230 + 231}, o ∈ X T fresh

N ′′ = intersect(N ′, t s, x, e + o, op)
addAddress(N, t s, x, ax, e, ae, op) = ∃XT (N ′′′)

where N ′ = N �N {4096 ≤ ox < 230 + 231}, ox ∈ X T fresh
N ′′ = N ′ �N {4096 ≤ oe < 230 + 231}, oe ∈ X T fresh

N ′′′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

intersect(N ′′, t s, x + ox, e + oe, op)
if L(ax) ∈ D ∨ L(ae) ∈ D

intersect(N ′′ �N {ox < oe}, t s, x + ox, e + oe, op)�N

intersect(N ′′ �N {ox > oe}, t s, x + ox, e + oe, op)
if ax �= ae

intersect(N ′′ �N {ox = oe}, t s, x + ox, e + oe, op)
if ax = ae

intersect(N, t s, ex, ey, op) = ∃XT (N ′′′)
where N ′ = wrap(N � x := ex, t s, x), x ∈ X T fresh

N ′′ = wrap(N ′ � y := ey, t s, y), y ∈ X T fresh

N ′′′ =

{
N ′′ �N {x < y} �N N ′′ �N {x > y} if op = ′�=′

N ′′ �N {x op y} otherwise

Fig. 13.8. Abstract transfer function for the revised conditional.
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lies in [4096, 230 +231 + s], where s is the maximum value of the pointer offset
x. Observe that the two cases presented so far are key to implementing the
common test p==NULL for some pointer p. Consider the calculation of N00; that
is, the state in which it is assumed that both sides have no l-values. The first
case applies since ax = ae = null. The state space remains unchanged since
intersect intersects the state N00 with the tautologous {0 = 0}. Now consider
the calculation of Ni0 – that is, the fact that the left-hand side contains a
pointer to ai. The second case of addAddress applies, which replaces the l-
value with the range o ∈ [4096, 230 + 231]. In intersect , the state is restricted
to Ni0�N {o = 0} = ⊥N . Thus, all states Ni0 of the join operation in cond are
empty so that no state in which a flag of p is set contributes to the final state.
As a result, the upcoming statements are evaluated with flags that are all zero
for p implying an empty points-to set. The dual test p!=0 is analogous.

The third pattern of addAddress implements the case that is symmetric to
the second pattern and requires no further explanation. The fourth case imple-
ments the comparison of two non-null pointers. In this case, two variables ox

and oe are created and restricted to the range of possible concrete addresses.
However, three cases are distinguished when comparing the two expressions.
In the first case, two abstract addresses are compared of which at least one
is a dynamically allocated heap region, which may exist several times in the
concrete program. Adding ox and oe to the expressions effectively inhibits
the inference of any useful information. This solution is probably as precise as
possible, considering that even an equality test between pointers cannot refine
any points-to relationship, as both pointers already point to a single abstract
address. In the second case, the abstract addresses are different, implying that
their concrete addresses must be different, too. Since a disequality ox �= oe

cannot be expressed in the polyhedral domain, the two states N ′′{ox < oe}
and N ′′{ox > oe} are intersected with the condition separately and the results
are joined. Given that pointers can only be meaningfully compared using the
operators {=, �=}, these two states are sufficiently precise to return either an
empty result (if op ≡ ′ =′) or the unchanged state (if op ≡ ′ �=′). The third
case applies when pointers contain the same l-value. These pointers have the
same concrete address, and thus the refined state N ′′ �N {oe = ox} is passed
to intersect . Note that if the pointer offsets x and e are in [0, 230], wrap does
not alter the state, so that, for example, x + ox < e + oe reduces to x < e
since ox = oe. Thus, the last case effectively compares the pointer offsets.

An interesting observation is that the variables ox and oe represent noth-
ing but the address of a memory region in the actual program. The transfer
function specifies these addresses in the form of temporary variables that
are projected out after intersect returns. While this strategy is prudent to
keep the number of polyhedral variables low, the scheme can be generalised
by introducing a polyhedral variable for every abstract address that is al-
ways present in the polyhedron. This variable representing the address could
then be added instead of the temporaries ox and oe. Tracking the possible
value of every abstract address enables an analysis of programs that examine
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the relative locations of memory regions. While calculations on pointers to
different memory regions are undefined according to the C standard, such
operations can be useful in the context of embedded systems, where certain
memory regions lie at fixed addresses. In this case, the polyhedral variables
that represent abstract addresses could be fixed to the known address of the
memory region. Note that in this case other functions, namely clearF,A, which
converts an abstract address to a value, and the function wrap, need adjust-
ing, too. Differentiating actual addresses in memory is more challenging in the
presence of heap-allocated regions which are summarised by a single abstract
address.

Note further that expressions involving pointers must always occur over
uint32 and that a pointer expression should never wrap. Hence, a practical
implementation will replace the call to wrap with a simple test that raises a
warning if one of the pointer expressions exceeds the uint32 range.

The technique of combining a pointer offset with the range [4096, 230+231]
of possible addresses also needs to be used to adapt the semantics of the cast
statement. Rather than elaborating on this and various other transfer func-
tions, we conclude with the presentation of the revised abstraction relation.

13.2.4 Incorporating Boolean Flags into the Abstraction Relation

This section considers the necessary changes to the abstraction, consisting of
the relation ∝, the concretisation function γρ : (Num×Pts) → Σ, the address
map ρ : A → [0, 232 − 1], and the function memρ : (Z|X | × Pts) → P(Σ)
synthesising concrete memory states. Changes in the first three definitions
are straightforward when considering that the points-to domain A ∈ Pts is
constant and can therefore be removed from the analysis. Only the function
memρ, presented on p. 100, needs to be redefined as memA

ρ : Z|X | → P(Σ):

memA
ρ (v) =

⋂
m∈
M∪D

⎛
⎜⎝ ⋂

a∈
ρ(L(m))

⎛
⎜⎝ ⋂
〈o,s,xi〉∈

F (m)

{bitss
a+o(πi(v) + v · p) | p ∈ fA

ρ (s, xi)}

⎞
⎟⎠
⎞
⎟⎠

Here, fA
ρ (s, xi) creates a vector of concrete addresses that is multiplied

with the value vector v ∈ [[N ]]. For all field sizes s �= 4, the function simply re-
turns fA

ρ (s, xi) = 0, and hence memA
ρ simply restricts the field to a pure value

determined by πi(v), the ith element of v. For pointer-sized fields, fA
ρ (4, xi) is

defined in terms of the set of abstract addresses 〈a1, . . . an〉 = A and the flags
f = A(xi). Specifically, let f = 〈xi1 , . . . xin〉; that is, the n flags correspond to
the domain variables xi1 , . . . xin

. We define fA
ρ (4, xi) as follows:

fA
ρ (4, xi) =

⎧⎨
⎩〈0, . . . , 0, p1︸︷︷︸

i1

, 0, . . . , 0, pn︸︷︷︸
in

, 0, . . . 0〉 pj ∈ ρ(aj), j = 1, . . . n
〈xi1 , . . . xin〉 = A(xi)

⎫⎬
⎭
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In the vector above, the annotations i1, . . . in denote the index position of
p1, . . . pn in the vector. Thus, the function returns all possible address vec-
tors in which the concrete addresses of the abstract addresses a1, . . . an are
arranged in such a way that the product v · p in memA

ρ multiplies these
addresses with the values of the flags f that determine if a certain address
is added to the field or not. In order to illustrate this process, consider a
program variable v with 〈0, 4, xv〉 ∈ F (v) and A(xv) = 〈f1

p , f2
p 〉 that deter-

mines if v points to one of the two abstract addresses A = 〈a1
p, a

2
p〉. Let

ρ(a1
p) = {p1, p

′
1} and ρ(a2

p) = {p2}, and let the set of abstract variables
be X = 〈xv, f

1
p , f2

p 〉. In order to determine the set of concrete stores, ob-
serve that fA

ρ (4, xv) = {〈0, p1, p2〉, 〈0, p′1, p2〉}. Given an abstract state N such
that [[N ]] = {〈0, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉}, four concrete values of v are possible,
namely 0 (from 〈0, 0, 0〉), p1, p′1 (from 〈0, 1, 0〉), and p2 (from 〈0, 0, 1〉). Note
that Boolean flags are mere abstract domain variables. As such, they may
take on other values besides zero and one. In particular, it is possible to store
the negation of a pointer in a variable and add the same pointer (possibly
with a different offset) later on. Such an operation is undefined according to
the C standard [51] but unlikely to be evaluated differently from our model.
In particular, an optimising compiler may reorder a linear expression d=o+p-q
to d=o-q+p, which resembles the example above if p and q are pointers. The
evaluation of expressions in Fig. 13.7 makes use of this property in that the
points-to vectors of variables are simply added.

The implementation described so far uses a vector of flags for each pointer-
sized field, and each vector has an element for every variable in the program.
Thus, incorporating the points-to analysis adds a quadratic number of vari-
ables to the numeric domain, which is prohibitive for a practical analysis.
Thus, it is prudent to remedy this presentational artifact of using vectors of
flags for each pointer, which is the topic of the next section.

13.3 Practical Implementation

In this section, we comment on the implementation of the concepts presented
so far. In particular, we focus on improving efficiency and point out restric-
tions of our approach. With respect to efficiency, the next section details how
to finesse the use of Boolean vectors for modelling points-to sets by inferring
a sufficient set of flags for each variable. Section 13.3.2 extends this automatic
inference to abstract addresses and generalises the technique by allowing sev-
eral abstract addresses per memory region, thereby improving the precision
of the analysis with respect to string buffer analysis. Instead of a Boolean
flag, it is also possible to distinguish several states using a numeric variable.
Section 13.3.3 demonstrates this by relating the elements of an array with
the index of each element. We show that a numeric value cannot fully dis-
tinguish individual elements and hence that it is weaker than a Boolean flag.
Section 13.3.4 concludes with an alternative to model points-to information.
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13.3.1 Inferring Points-to Flags on Demand

Chapter 10 introduced the concept of typed domain variables, in which a
default value is assigned to a variable that is not mentioned in a domain.
Typed domain variables are key to populating the map of fields on-the-fly. Not
surprisingly, this concept can easily be applied to other maps in the analyser.
Specifically, rather than associating a fixed vector f ∈ A(x) with every pointer-
sized field x, the points-to map A ∈ Pts is continuously augmented such
that it only holds a flag for l-values that have at one point been assigned
to this field. By typing these points-to flags such that their default value is
zero, this map can always be extended without the need to update other
polyhedra, as the interpretation of the new flag f is that the corresponding
abstract address is not part of the variable’s points-to set. To this end, the
analysis keeps a single map A ∈ Pts = A → P(A× X ), which stores a set of
tuples {〈ai1 , f1, 〉, . . . 〈ain

, fn〉} for each pointer-sized field, where {ai1 , . . . ain
}

is usually a very small subset of A. In particular, the quadratic number of case
distinctions in the abstract transfer function of the conditional is finessed since
the right-hand side is usually a constant rather than an expression involving
l-values.

Note that augmenting a single global points-to map A ∈ Pts weakens the
flow-sensitive points-to analysis used in the early chapters to a flow-insensitive
analysis in which flow sensitivity is recovered by consulting the flags in the
numeric domain. Furthermore, even the flow-insensitive information that is
present in the addresses of the tuples of A can be more precise than a classical
subset-based points-to analysis [3,99]. In particular, the result is more precise
if, in an assignment from the field x ∈ X to y ∈ X , the abstract address a
with 〈a, f〉 ∈ A(x) is not added to the set of tuples A(y) whenever f is zero.

Populating the map of fields and the points-to map on-the-fly has the
obvious advantage of reducing the number of variables the analysis needs to
track, thereby improving the efficiency. The next section discusses the merit
of creating abstract addresses on-the-fly.

13.3.2 Populating the Address Map on Demand

The ability to add fields and points-to flags on-the-fly significantly reduces
the number of abstract variables used in the analysis. A further reduction in
the number of tracked variables can be achieved by restricting the number
of manipulated nul positions. The string buffer analysis in Chap. 11 was
defined to infer a nul position for each abstract address a ∈ A. Here, the set
of abstract addresses was given by the bijective address map L : M∪D → A.
Hence, since one abstract variable is tracked for each nul position, the number
of variables required is equal to the number of memory regions m ∈ M∪D.
The crucial observation is that no abstract address is necessary for memory
regions whose address is never taken, as these cannot be accessed through
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a pointer. Since the address of most variables is never taken, the number of
variables representing nul positions is significantly reduced.

Populating the address map on demand opens up an interesting oppor-
tunity for improving the precision of the analysis. A loss of precision in the
analysis presented so far occurs when arguing about string buffers that are
embedded in a structure such as the following:

������ {
���� firstname [80];
���� surname [120];

} client;

Recall that translating a program to Core C removes all information on
data structures, and hence the structure above is represented as a memory
region of 200 bytes. Suppose that s represents a variable of the type above. A
program that writes a nul-terminated string to s.surname cannot be analysed
precisely since the only nul position for this buffer is tracked relative to the
beginning of the whole structure. Worse, suppose a flag f decides whether the
first or the last name is supposed to be edited. Then the statement

�	 (f) p = &s.firstname; 
��
 p = &s.surname;

might precede a statement that writes a new nul-terminated string to p. Even
in the revised model, this example cannot be analysed precisely since for both
branches p points to the beginning of the memory region s, while the offset
of p lies in [0, 80], the best approximation of the offsets 0 and 80 of the two
arrays. As a result, evaluating the equations for string buffer accesses cannot
infer a definite nul position within firstname since the access position [0, 80]
implies that any zero byte might be written beyond the end of the first array.

In order to preempt the precision loss above, observe that the rule for
taking an address in Core C is v . n = & v . n ; that is, the rule allows for an
offset within the memory region whose address is taken. We exploit this fact
by allowing several abstract addresses per memory region. In particular, each
time an address-of operator is evaluated, a new abstract address is created at
the given offset unless an address already exists at that offset, in which case it
is reused. To this end, redefine the bijection L :M∪D → A to the partial map
L : (M∪D)×N → A, which, for certain offsets, associates an abstract address
with a memory region. Using this approach, the evaluation of the conditional
above results in the pointer p having a constant offset of zero, albeit having
a points-to set containing the abstract address L(s, 0) for s.firstname and
the address L(s, 80) for s.surname. As a consequence, two nul positions
are tracked for the structure, one for each array. Allowing several abstract
addresses per memory region requires cross-cutting changes to the analysis.
For instance, the updates of the nul position in Fig. 11.6 on p. 210 need to
ignore accesses in front of the nul position since these are not erroneous if
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Fig. 13.9. Arrays containing constants can be accessed in a way that creates a
linear relationship between the access position and the constant.

the abstract address has an offset. Furthermore, the function addAddress in
Fig. 13.8 may no longer assume that two different abstract addresses denote
two non-overlapping memory regions. In particular, whenever two abstract
addresses correspond to the same memory region, the pointers are compared
as if the abstract addresses were the same except that the offset difference
between the two pointers has to be incorporated. Since these changes are
mostly technical, they are omitted for simplicity.

The following section discusses an orthogonal generalisation of using
Boolean flags. In particular, we consider how and if a single variable can
be used to distinguish more than one state.

13.3.3 Index-Sensitive Memory Access Functions

While it is clear that the precision of an analysis depends not only on the
underlying domain but also on the abstract transfer functions, it is often less
clear if and how the transfer functions can be refined. This section points out
a possible refinement for the functions that model the access to memory. In
particular, the precision of the readChkF,A function can be improved by mak-
ing it sensitive to the offset of the access. For instance, suppose a table con-
taining constants is given whose values correspond to the crosses in Fig. 13.9.
The readChkF,A function will create an access tree for each constant and join
the result of all the extracted values, yielding the state space indicated by the
dashed box. A more precise result can be obtained by intersecting the state Ni

in the first line of the function with a constraint that expresses that the cur-
rent access position is that of the access tree that is about to be assigned
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to x and f . This approach would yield the grey state space in Fig. 13.9. We
omitted this refinement for presentational reasons: accessF may generate the
empty access tree εAT several times (that is, with several offsets), thereby
complicating the restriction of the Ni unduly.

Observe, however, that incorporating the access offset will not enhance
the precision unless all array elements are populated. Yet, even for a table
of constants where every field of an array is given, the convex approximation
may be too imprecise. For instance, consider a table t that stores a monotone
function, and assume that the following code fragment accesses the table:

��� d = t[i+1]-t[i];
assert(d>=0);

If i, the range of the program variable i, is restricted to 1 ≤ i ≤ 19, the
difference d of consecutive table values is always non-negative. The original
readChkF,A function infers the range [4, 10] for t[i+1] and [1, 10] for t[i],
resulting in [4, 10]− [1, 10] = [−14, 9] for a bound on the difference d.

Figure 13.10 shows how the precision of this answer improves to [−3, 4]
when incorporating the access position. Evaluating t[i+1]-t[i] in the poly-
hedral domain corresponds to calculating the difference between the state
space in Fig. 13.9 and the same state shifted one unit to the right (for t[i+1]).
The convex approximation of the table values leads to the overlapping state
in dark grey in Fig. 13.10, for which it cannot be shown that the difference is
non-negative. This is depicted in the lower graph, which shows d in relation to
the index i after integral tightening is applied. The crosses in the lower graph
indicate the exact result, which is always non-negative. Thus, even when the
index position is incorporated into the array access, it is not possible to prove
that d is non-negative, although the maximum range of d is now [−3, 4] and
thereby considerably more precise than the solution [−14, 9], which ignored
the access position. While incorporating the access position into readChkF,A

may increase the precision, this added precision does not seem sufficient to
be relevant in practice, as only linear relationships between the index and
the content of the array can be expressed. Since a simple linear function
would hardly be stored in a table of constants, incorporating the index po-
sition into array accesses never yields precise results. The Astrée analyser
is able to prove the assertion by analysing the code fragment separately for
every value of i, a behaviour triggered by a heuristic or an annotation in
the analysed program [69]. This behaviour could be simulated by adding a
Boolean flag for each array index. A less costly solution is to partition the in-
dices of the constant table into strictly increasing ranges and constant ranges
and to split the control-flow path for every such range. In the example, the
ranges [1, 1], [2, 4], [5, 6], [7, 8], [9, 13], [14, 15], [16, 17], [18, 20] constitute such a
partitioning. The relations between each index range and the constants of the
table are linear, so no precision is lost due to convexity, and monotonicity can
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Fig. 13.10. Incorporating the access position cannot prove monotonicity of a table.

be proved. In general, such a refinement can hardly be done automatically, as
it requires an understanding of the property to be proved and the reason why
precision is lost.

13.3.4 Related Work

When using a convex approximation to the possible state space of a program,
a separate analysis of the same piece of code is often an easier solution to
recover from a loss of precision in the join operator than designing a new
domain. For instance, analysing the division operation in Sect. 13.1 twice is
easier than adding a new domain that expresses disequalities of the form d �= 0
and ensuring the propagation of information from this to the numeric domain.

The Astrée analyser [60] distinguishes two ways of partitioning traces. The
first is to keep two control-flow paths separate when they join. The second
is a partitioning according to the value of a variable. An application of the
first technique is the division example and also any kind of loop unrolling. The
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second technique is used for problems such as the example on accessing arrays
in the last section. The second technique uses a BDD-like data structure in
which the branches are labelled with the value of the chosen variable [123].
The program points at which these techniques are applied are given either by
manual annotations or by heuristics that determine which technique can be
useful judging from the structure of the program. Different heuristics may be
required for different classes of programs. Thus, the Astrée analyser is required
to choose the correct split and joint points in order to prove the program cor-
rect. In contrast to this approach, the Static Driver Verifier (SDV) [17] verifies
the API usage of device drivers by converting their C source into a program
with only Boolean variables [20]; that is, the only way of abstracting the in-
put program is by partitioning the set of traces using Boolean variables. The
resulting Boolean programs are then checked against a pre-defined set of rules
using a model checker [19]. If a rule cannot be proved or disproved, a new
predicate is synthesised, thereby splitting the set of traces in the concrete
program with the aim of improving the precision of the abstraction with re-
spect to the property of interest. Thus, SDV iteratively splits the control-flow
path and reanalyses the source until the rules can be proved. Both approaches
explicitly partition the set of traces so that the cost of the analysis depends
on the choice of the split and join points. In this chapter, we propose to use
polyhedral analysis but implement the split of a control-flow path by adding
a Boolean flag to the domain. The observation is that adding a Boolean flag
may be cheaper if the two states it separates are similar. Thus, our method
can be used opportunistically; that is, Boolean flags may be introduced by
default whenever a partitioning may be required later. This approach may be
cheaper than a reanalysis of the same code as long as the states separated by
the flag are reasonably similar.

Alternative Approaches to Improving Points-to Information

Using Boolean flags to indicate whether a given l-value is part of a points-
to set provides a very expressive points-to analysis but requires a domain
that can express these Boolean relationships. Furthermore, the number of
Boolean flags required to analyse a program may become large if a program
has variables with large points-to sets. In this case, the points-to analysis
presented in Chaps. 5 and 6 may be used. Although the string-copying loop in
the example cannot be proved using the set-based points-to domain, it might
be possible to prove other program properties. Furthermore, the set-based
points-to analysis can be refined in order to mend some of its deficiencies. To
this end, consider the following variation on the string-copying example:

���� *p;
���� s[16] = "Propeller";
���� t[16] = "Aero";
���� *u = "plane�";
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���� *o;
p = t+4;
�� (rand ()) p = &s+5;
o=p; /* Safe p before it is modified. */

����	 (*p=*u) { p++; u++; };
printf("copied�%i�characters\n", p-o);

As with the original example in Chap. 11 on string buffer analysis, a single
string constant u is appended to the buffer pointed to by p. However, p may
point either to the end of the string "Aero" or "Propeller", depending on
a random number. Suppose that as ∈ A and at ∈ A represent the abstract
addresses of the buffers s and t, respectively, and that the abstract variables
p, o ∈ X represent the values of p and o, respectively. Observe that the points-
to set of p after the conditional is A(p) = {as, at}. Since p is saved in o before it
is modified in the loop, the variable o will contain the same pointer and, hence,
A(o) = {as, at}. However, when evaluating the difference p-o, the points-to
sets do not convey enough information to ensure that o points to exactly the
same buffer as p. Hence, it has to be assumed that the two variables may point
to different buffers such that the result of p-o is dominated by the difference
between the address of s and the address of t (or vice versa). In practice, this
implies that p-o cannot be bounded using simple points-to sets.

In the context of program analysis with dependent types [94], this problem
is circumvented. Whenever a points-to set contains two or more abstract ad-
dresses, it is summarised by a single abstract address that is a representative
of this set. For instance, in the example above, the join after the �� statement
merges two control-flow branches in which, on the one hand, A(p) = {at} and,
on the other hand, A(p) = {as}, a new abstract address a ∈ A is created that
represents the set {as, at}, and A is updated such that A(p) = {a}. During the
evaluation of the loop, when the actual set of memory regions of a is required,
the set {as, at} that a represents is used. For pointer arithmetic, assignments,
and comparisons, however, the representative a is used. Thus, the assignment
o=p; updates A such that A(o) = {a}, and hence the pointer difference p-o
is calculated as p− o since p and o both point to a.

Only minute changes are necessary in order to adapt the points-to domain
Pts from Chap. 3 to operate on representative addresses. The entailment
check can exploit that two domains A and A′ are equal if A(x) = A′(x) for
all x ∈ X , even if a points-to set A(x) represents a set of abstract addresses.
If A(x) �= A′(x), the underlying sets must be retrieved and compared such
that the overall semantics of the entailment check is unaffected by the intro-
duction of representative addresses. With respect to the join operation, the
result for any given variable x ∈ X is A(x) if A(x) = A′(x). Otherwise, the
result is a new representative abstract address a that corresponds to the set
A(x) ∪A′(x). Note that this definition of the join operator may create a new
representative in every evaluation of a block. However, as the analyser will
find a fixpoint in finite time, the number of newly created representatives
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is finite, too. Termination is guaranteed, as the semantics of the entailment
check reduces to subset tests on the underlying sets.

An interesting challenge is the combination of representative addresses
and Boolean flags. In particular, it might be possible to reduce the number of
Boolean flags necessary to track points-to sets if a single flag can be used for
a representative address rather than several flags for the individual addresses
that constitute the representative address. An obstacle to this approach is
that creating new representative addresses repeatedly for the same pointer
is incompatible with adding Boolean flags to the domain, which is a process
that can only be done a finite number of times. Even if these problems can be
solved, observe that representative addresses merge the numeric information
for the pointers that are summarised, so that the termination of the loop
discussed at the beginning of the chapter cannot be shown.



14

Implementation

The building blocks of a static analyser for a programming language resemble
those of an interpreter or virtual machine, except that the operations per-
formed for each program statement are expressed in terms of the abstract
domain rather than the concrete store. While implementing the semantics
of a program statement in the context of an interpreter is a clear-cut task,
implementing the semantics in the context of a static analysis provides a
plethora of possibilities, partly because it involves a trade-off between preci-
sion, efficiency, and simplicity of implementation, the latter possibly affecting
the correctness. The design of the analysis presented in the last chapter is
the result of trying several approaches, including a staged approach in which
an off-the-shelf points-to analysis is run on the code [99] before a constraint
system is deduced, which is then solved using polyhedral operations. This ap-
proach is similar to that of Wagner [184] and shares the inability to generate
precise constraints for pointer dereferences since the offset of a pointer is not
known until the constraint system is solved. The idea behind the analysis pre-
sented is therefore to generate the operations that manipulate polyhedra by
determining which fields a pointer may access. Thus, manipulating polyhedra
is interleaved with querying the range of certain variables in the polyhedron
in order to derive the next polyhedral operation. While this approach leads
to more complex transfer functions, it seems like the only viable approach to
a precise analysis.

In this chapter, we present an overview of our analyser, some technical
aspects that are important in practice, and an extension that we deem to
be important to make the analysis precise enough to verify off-the-shelf C
programs. We explain where the abstractions presented are too imprecise and
how this inhibits the analysis of larger programs. In particular, Sect. 14.1 pro-
vides an overview of our prototype analyser, Sect. 14.2 comments on checking
for erroneous state space, and Sect. 14.3 discusses the efficient calculation of a
fixpoint in a practical analysis. With respect to the precision of the analysis,
Sect. 14.4 discusses inherent limitations of the string buffer analysis, whereas
Sect. 14.5 suggests a possible extension to the analysis.
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14.1 Technical Overview of the Analyser

This section presents the prototype implementation of the static analysis de-
scribed. The design of the analyser was guided by the task of analysing the
C program qmail-smtp, which is part of the qmail mail transfer agent, a
program to handle emails. The chosen program receives incoming mail over a
network connection and is thus prone to buffer-overflow attacks. The program
is deemed to be bug free, which makes it a prime candidate for designing a
static analysis in that any warning can be attributed to the imprecision of
the analyser. Furthermore, the program is reinvoked for every new email such
that it is single-threaded and does not use long-lived dynamic data structures.

The basic structure of the analyser is shown in Fig. 14.1. In the context
of translating the program qmail-smtp, several source files have to be trans-
lated, as shown schematically in the top left of the diagram. Using the build
infrastructure of the qmail suite, each source file is compiled by a modified
version of the GNU C compiler, dubbed gcc in the figure. The compiler is aug-
mented with a treewriter module, which emits an image of the intermediate
representation called tree as part of its assembler output. Each assembler file
is then turned into an object file by the standard assembler as. The resulting
object files contain three new segments that hold the intermediate structure:
one for declarations of memory regions, one for string constants, and another
for the actual code in tree representation. Running the linker on these object
files creates a single binary file with the additional segments. These segments
can be examined by a tool dubbed tree browser, which proved to be important
in understanding the intermediate structure of the compiler. For the sake of
the analysis, the extra segments in the binary file are translated into Core C.
The translation to Core C simplifies the intermediate structure of GCC and
creates a single initialisation block that contains assignment statements for
initialised variables and, in particular, an array declaration and initialisation
for each string constant. Any function that is not defined in the binary file
itself is treated as a primitive, which has to be implemented as such when
calculating a fixpoint of the semantics of the program. The utility Core C
printer converts the binary Core C representation into human-readable form.
The Core C examples shown throughout this book are the result of running
this tool.

In the common case, the binary Core C file is read by the static analyser,
dubbed “fixpoint calculation” in the figure, which can be invoked either with
an interactive command-line prompt or with a graphical user interface. Both
interfaces allow the user to run the fixpoint computation to completion or
to evaluate single blocks or single statements. Furthermore, it is possible to
query the TVPI domain, the points-to domain, the current set of landmarks,
the fields and addresses of memory regions, and the current work list, which
contains the list of blocks that are yet to be evaluated.
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For the example application qmail-smtp, which consists of about 3 kLOC
(lines of code), the intermediate structure created by GCC consists of 404 kB
of code and 17 kB in strings. The intermediate representation translates to
27 kB of variable declarations, 55 kB of Core C code, and 12 kB in strings.
For comparison, the raw machine code when compiled for Intel x86 processors
is 18 kB in size. The Core C version of the program contains 1,710 variables,
of which 60 are global, most of which are string constants. The qmail-smtp
program contains 119 reachable functions – that is, functions that are either
reachable from the main() function or whose addresses have been taken.

All components of the static analysis are written in Haskell (about 20
kLOC) with the exception of the treewriter extension to GCC, which is mostly
automatically generated C code, and the TVPI domain (TVPI library in the
figure), which is comprised of 10 kLOC of C++ code. While the analysis of
the small examples such as the string-copying loop from Chap. 11 terminates
in less than a second, the analysis of qmail-smtp takes in excess of an hour
without actually processing the whole program. The incomplete coverage is
due to precision losses in the analyser. Specifically, arrays containing pointers
are approximated in our analysis by an unbounded value and a zero points-
to vector, corresponding to the points-to set {null}. Dereferencing such a
pointer triggers a warning about accessing a value. The erroneous circum-
stance where an array element is dereferenced although it contains a value is
removed, thereby stopping the analysis at that point since the points-to set
contains no further l-values and the following statements are thus deemed un-
reachable. Before discussing how to improve the precision of the analysis such
that the whole program is analysed, we comment on practical implementation
issues and inherent limitations of the analysis.

14.2 Managing Abstract Domains

While the larger part of the code base of the analyser is concerned with
the management of work lists, abstract states, transfer functions, and the
handling of fields that make up memory regions, the bottleneck of the analysis
remains the domain operations of the polyhedral domain. Thus, it is prudent
to avoid unnecessary domain operations whenever possible or to replace costly
operations with cheaper ones. In this context, observe that a reoccurring task
is to check for correctness of a memory access; that is, to check if a warning
must be emitted. Conceptually, these checks have been presented so far by
refining an input state N to a state N ′ = N �N {0 ≤ o < s}, where the
invariant that an access offset o lies within the bounds of a memory region
of s bytes is expressed using the meet operator. If this invariant holds in
N , then the constraint 0 ≤ o < s is redundant in N and N ′ is no smaller
than N ; that is, N �N N ′. Implementing this strategy directly requires a
copy of the original domain N , the calculation of the intersection, and an
entailment check. By enhancing the meet operation, it is possible to implement
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Fig. 14.2. Intersecting a domain with a redundant constraint. The crosses mark
feasible points if x is a multiple of two.

a cheaper strategy that does not require a copy of the domain or an entailment
check. Specifically, the meet operation is refined to distinguish three possible
outcomes:

unsatisfiable: adding the constraint rendered the domain unsatisfiable
changed: the domain has changed but is still satisfiable
redundant: the constraint was redundant and the domain remains unchanged

The last outcome permits a cheaper implementation of the correctness
checks. Rather than copying the current state and using an entailment check
to determine if the constraint that expresses the bound check is redundant, it
is sufficient to merely add the constraint and to check if it was redundant. If
the program can be proved to be correct, all bound checks will be redundant,
so enhancing the meet operation is a major performance improvement.

One subtlety that arises in this approach is that it is not always easy to
determine if a constraint is indeed redundant. Ideally, a constraint is flagged
as redundant if adding it to the inequality system leaves the state space repre-
sented by the new system unchanged. However, in the context of the integral
TVPI domain, the inequalities and the multiplicity information constitute
only an approximation to the enclosed integral set of points. Thus, a new con-
straint that is added to a domain might change the representation of the state
space without changing the set of feasible integral points. We have observed
this phenomenon when the multiplicity domain and the polyhedral domain
are not implemented as a reduced product – that is, if both domains are used
separately. For example, suppose that the inequalities x = y + 1 and y ≥ 2
are added to an initially empty system. Furthermore, suppose the multiplicity
is given by M(y) = 0 and M(x) = 1. The system P = [[x = y + 1, y ≥ 2]]
is shown in Fig. 14.2, where crosses mark those vertices that adhere to the
multiplicity information. It can be seen that the lower bounds of x and y are
not fully tightened since x must be a multiple of two. Now consider adding
the redundant inequality x ≥ 3. Even though the inequality is redundant
with respect to P , the implementation of the meet operation will incorporate
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the multiplicity information for better precision, thereby tightening the new
inequality to x ≥ 4 before adding it to P . Since the bounds of P are not
fully tightened with respect to the multiplicity information M , the new in-
equality x ≥ 4 is considered to be non-redundant. If x ≥ 3 arises from a
bound check, the deduction that the inequality is non-redundant leads to the
incorrect warning that the access is not within bounds.

In order to avoid the phenomenon above, the propagation between the
polyhedral and the multiplicity domains needs to be improved. This goal is
best served by avoiding the need for explicit propagation of information, which
is achieved by implementing both domains as a reduced product. However, this
new numeric domain still represents an approximation to the set of contained
integral points in that a rational TVPI system is used to track integral points.
Thus, adding constraints that are redundant with respect to the contained
integral points may still change the representation of the domain and may
thereby incorrectly trigger a warning. Tightening each polyhedron around
the contained integral points would guarantee that a redundant constraint
is flagged as such. However, as pointed out in Chap. 9 on integral TVPI
polyhedra, ensuring that a polyhedron is always tightened to a Z-polyhedron
is too costly. Hence, flagging redundant constraints as non-redundant cannot
be completely avoided.

Note that these problems are not necessarily linked to the way invariants
are checked: Even when performing a bounds check by copying a reference
domain and using an entailment test to check for a change, the same problems
regarding different representations of state spaces may occur. In particular,
intersecting the copy of the original domain with a redundant inequality might
change the representation of the copy, even though the set of contained integral
points does not change. Thus, the test if the original domain is entailed in the
copy might fail since the representation of the copy has changed with respect
to the representation of the original.

The next sections elaborate on how the number of domain operations can
be reduced by using different iteration strategies. While an efficient bound
check reduces the cost of evaluating a transfer function, a good iteration stra-
tegy may reduce the number of basic blocks that need to be evaluated. As
such, the potential for a speedup is much larger.

14.3 Calculating Fixpoints

A reoccurring challenge in the analysis of programs is the inference of loop
invariants. The presence of loops requires that the possible state space of a
program be calculated as a fixpoint. The idea is to store an abstract state for
each basic block that is valid at the beginning of that block. For an efficient
analysis, the fixpoint calculation is based on a chaotic iteration strategy [34]
in which the analysis executes some basic block whose input state has not
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Fig. 14.3. Evaluating conditionals without repeated analysis of following blocks.

yet been propagated until a fixpoint is reached. In particular, analyses often
employ a work list of basic blocks that are not yet stable; that is, blocks that
have not been evaluated with their current input state. In each analysis step,
one basic block is taken off the work list, its semantics is evaluated, and the
new state is propagated along the outgoing control-flow edges. Each basic
block that thereby receives a new input state is added to the work list. The
process is repeated with the next basic block from the work list until the list
is empty, at which point all basic blocks are stable and a fixpoint is reached.

14.3.1 Scheduling of Code without Loops

The challenge of an efficient fixpoint engine lies in finding a scheduling of basic
blocks that minimises the number of times each basic block is evaluated. In
order to illustrate the problems involved, consider the control-flow graph of
two simple conditionals depicted in Fig. 14.3. Assume that the previous basic
block has led to the evaluation of the condition i<127, in which both branches
received a larger state. Given scheduling based on a work list, the two pending
basic blocks are stored as the list 1,2. A simple FIFO propagation strategy
consists of removing the first element from the work list, namely 1, evaluating
the corresponding basic block, and adding any new pending basic blocks at
the beginning of the list. In the context of the example, this corresponds to
evaluating block 1, which will make block 5 pending, and it is hence prepended
to the list. Thus, block 5 is executed next, making block 6 pending, and this
is then executed. As soon as the evaluation of a basic block does not result
in any new pending basic blocks, basic block 2 will be evaluated. As before,
the state will be propagated to blockd 3, 5, 6, and so on. Note that before the
evaluation of block 5, the output state of block 3 is joined with that of block
1 and evaluation continues with the joined state. Since the join includes the
state space resulting from the evaluation of block 1, the previous evaluation
of the blocks 5, 6, etc., is made obsolete. A depth-first iteration strategy is
thus unsuitable for implementing an efficient analyser.



266 14 Implementation

As an alternative, consider a breadth-first traversal, which can be imple-
mented by appending new pending blocks to the end of the work list. However,
even this strategy does not avoid duplicated evaluation of nodes. In order to
illustrate this, consider the fixpoint calculation starting with the two nodes 1
and 2 as the work list. Here 2 � 3, 4 denotes that evaluating block 2 makes
the blocks 3 and 4 pending. Consider the scheduling of eight pending blocks:

iteration work list evaluation
1 1,2 1 � 5
2 2,5 2 � 3,4
3 5,3,4 5 � 6
4 3,4,6 3 � 5
5 4,6,5 4 � 5
6 6,5 6 � 7
7 5,7 5 � 6
8 7,6 7 � . . .

Iteration 7 of the fixpoint calculation is noteworthy because the sequence
5,6,7 is analysed a second time. In order to ensure a minimum of repeated
evaluations, we impose the restriction that a basic block may not be evaluated
until all incoming nodes have fired – that is, updated the state of that block.
Specifically, each block on the work list is associated with a set of edges that
still need to fire before the evaluation of that block proceeds. If this set is
empty and an incoming edge updates the state, the set is updated to all
incoming edges except the one that just fired. Calculating a fixpoint using
this strategy results in the following iterations, where the work list consists of
tuples containing the basic block number and the set of incoming edges that
have not yet fired. The first iterations now schedule the following blocks:

iteration work list evaluation
1 〈1, ∅〉, 〈2, ∅〉 1 � 5
2 〈2, ∅〉, 〈5, {3, 4}〉 2 � 3,4
3 〈5, {3, 4}〉, 〈3, ∅〉, 〈4, ∅〉 3 � 5
4 〈5, {4}〉, 〈4, ∅〉 4 � 5
5 〈5, ∅〉 5 � 6
6 〈6, ∅〉 6 � 7
7 〈7, ∅〉 7 � . . .

The strategy above works well if the evaluation of each block leads to a
new state for the following block. If the evaluation of a block results in a
smaller or equal state space, the computation should stop since a fixpoint
along this path has been reached. However, simply removing a block from the
work list whose input state is stable will prevent later blocks from running.
For instance, if the evaluation of block 3 in the example does not lead to a
bigger state, the incoming edge 3 of block 5 will never fire, and hence the new
state of block 5 is not propagated.
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Fig. 14.4. Evaluating loops may update the following basic block several times.

One solution to this problem is merely to skip the actual evaluation of
the basic block whenever the input state is already stable. Specifically, when
a block with a stable input state is scheduled, all blocks along the outgoing
edges are enqueued onto the work list as if the block had been evaluated.
This strategy ensures that all incoming edges of a block will eventually fire.
However, in the presence of loops and function calls, additional mechanisms
are necessary.

14.3.2 Scheduling in the Presence of Loops and Function Calls

The simple approach of waiting for all incoming edges to fire before a basic
block is scheduled only works for straight line code. In particular, tracking
which incoming edges have already fired in the context of a loop creates a
basic block in the work list with a pending edge. For instance, consider the
loop in Fig. 14.4, which is entered at block 1 and thus block 1 is added to the
work list with the edge from block 2 as pending. Since the back edge from
block 2 will not fire until the loop itself is evaluated, block 1 is stalled in
the work list. Given a non-empty but stalled work list, block 1 could be run.
However, the same problem occurs after block 2 is evaluated, namely block 1
is put onto the work list and is stalled since only one incoming edge has fired.

Another loop-related scheduling problem is the repeated propagation out
of the loop. For instance, the exit condition that tests the lower bit of i in
Fig. 14.4 may propagate a changed state via its false branch several times dur-
ing the fixpoint computation of the loop. Each time the condition is evaluated,
block 3 is added to the work list and, since it has no other incoming edges
that must fire, it can be evaluated immediately. As a consequence, the blocks
3,4,5 are evaluated as many times as the loop conditional is evaluated. This
problem is exacerbated when analysing a sequence of several loops, where the
evaluation of one loop leads to the repeated evaluation of the following loops.

Both problems, namely scheduling stalled basic blocks that constitute the
heads of loops and the repeated scheduling of blocks that lie outside of a loop,
can be circumvented in a reducible control-flow graph by adding additional
rules for edges that enter or exit loops. However, the control-flow graphs of
programs may not always be reducible. Similar problems arise due to function
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1 2 3 4 5 6 7 8

Fig. 14.5. Calculating strongly connected components from a control-flow graph.

calls. Specifically, functions may be called through a pointer, which implies
that several functions are scheduled at once if the pointer contains more than
one l-value. Upon the return of each function, the result will be propagated
along the outgoing edges of the call site. Thus, the outgoing edges will fire
once for each function that was called, with the effect that the following
blocks might be executed several times. A reliable workaround that delays
the scheduling of the blocks at the call site is much harder to devise since, for
example, a function might call exit() and thereby not propagate any state.

14.3.3 Deriving an Iteration Strategy from Topology

One solution to the problem of calculating fixpoints of imperative programs
was given by Bourdoncle [34]. He devised a variant of the classic Tarjan al-
gorithm [178] to calculate strongly connected components (SCCs) even in
the presence of irreducible control-flow graphs. His algorithm calculates a so-
called hierarchical ordering – that is, a permutation of the set of basic blocks
in which (possibly nested) SCCs are identified by parentheses. For example,
a hierarchical ordering of the control-flow graph in Fig. 14.5 is the following:

1 2 (3 4 (5 6) 7) 8

This sequence is to be interpreted as two SCCs, where the SCC containing
blocks 5 and 6 is contained within the SCC that is composed of blocks 3 to 7.
Given this hierarchical ordering, one strategy for scheduling the computation
is to evaluate the basic blocks starting from block 1 and to perform a fixpoint
computation for each SCC encountered. In particular, the underlined blocks
form the heads of the SCCs and are used as widening points. In the example,
the blocks 1. . . 6 are executed before a fixpoint for the SCC 5,6 is calculated
using block 5 as a widening point. Once blocks 5 and 6 have stabilised, block 7
is evaluated and a fixpoint calculation of the SCC 3. . . 7 commences. As part
of this fixpoint calculation, several fixpoint calculations of the sub-SCC 5,6
may be performed. In general, the number of blocks that are evaluated with
this strategy can grow exponentially with the nesting depth of SCCs.

The benefit of a scheduling strategy that is based on the topology of the
control-flow graph is that the work list can be replaced by a simple index
into the hierarchical ordering. Specifically, an index of the form i0.i1 . . . in
identifies a basic block in an SCC of nesting depth n. Here, ik denotes the
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block number at that level. Each sub-SCC has its own number. For instance,
the control-flow graph in Fig. 14.5 has the following indices:

block 1 2 3 4 5 6 7 8

index 1 2 3.1 3.2 3.3.1 3.3.2 3.4 4

Instead of a work list, the analyser stores a single index that indicates that
all basic blocks with a lexicographically smaller index are stable. This index
is called the current index. Whenever a basic block is updated, for instance
through a function return, the lexicographically smaller index of the current
and the newly updated index becomes the new current index. After a block
is processed, the index is advanced to the next index in the total order of the
blocks unless the input state of a block with a smaller index was updated.
This scheduling strategy is robust with respect to loops with several entry
and exit nodes and with respect to function calls through pointers. In fact, a
call stack of functions can be implemented easily by keeping a list containing
triples consisting of a function, its call stack, and the current index within that
function. By evaluating blocks in those functions that have the deepest call
stacks, leaf functions are evaluated to completion before the evaluation of the
caller is continued. In particular, if a function call through a pointer invokes
several functions, their call stacks are all of the same depth and are thus
evaluated concurrently. Only after the evaluation of all callees is completed
does the evaluation at the call site continue.

As described in Sect. 14.3.1, it is beneficial to store a flag with each basic
block that indicates whether the input state of that block needs propagating.
If the current index refers to a block for which the flag states that evaluation
is not necessary, the current index is merely advanced.

14.3.4 Related Work

Bourdoncle was the first to devise a chaotic iteration strategy from the topol-
ogy of the control-flow graph rather than using a work list. He proposed two
different strategies for computing a fixpoint: iterative and recursive. The iter-
ative strategy repeatedly evaluates all basic blocks in the outermost SCC until
a fixpoint is reached in the outermost and all contained SCCs. The recursive
strategy was described in the previous section; it calculates a fixpoint for every
inner SCC before continuing to the enclosing SCC. Bourdoncle observes that
the worst-case complexity of the recursive iteration strategy is better than
that of the iterative iteration strategy and that this result usually carries over
to the actual implementation. Howe and King [103] compare different iteration
strategies and point out that using Bourdoncle’s algorithm to calculate SCCs
is relatively expensive and may also perform significantly worse that simpler
iteration strategies. Due to the complexity of the proposed polyhedral analy-
sis, the overhead of running Bourdoncle’s algorithm is not an issue. However,
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it might be possible to find fixpoints faster using a different iteration strategy,
in particular in the presence of extrapolation strategies such as widening with
landmarks.

Other work on iteration strategies for analysing imperative programs in-
cludes that of Burke, who describes how to construct iteration strategies by
sorting the nodes in a graph topologically [37]. Loops that are reducible are
replaced by a virtual edge connecting the head of the loop with the exit nodes.
This virtual edge is then associated with a fixpoint of the transfer function
of the loop. This transfer function is calculated by a traversal of the loop
body in topological order without considering back edges. The disadvantage
of this approach is that it requires a reducible control-flow graph and some
non-trivial transformations on it and no flexibility of altering the iteration
strategy.

Another aspect of calculating fixpoints efficiently lies in the way stability
is detected. Once the SCCs of a graph are calculated, it is sufficient to check
for entailment at the head of each SCC. In cases where the join operation is
more expensive than an entailment check, a more efficient analysis may be
possible by checking entailment at the basic block level. That is, when a new
state is propagated along the outgoing edges to other basic blocks, it is first
checked if this new state is already contained in the current input state of
that block. If it is, no join needs to be calculated and the flag marking the
basic block as pending is not set. This strategy can improve efficiency if the
loop invariant is tested within the loop rather than at the head of the SCC.
A surprising instance of a fixpoint calculation that stabilises in the loop body
can be witnessed in the context of string buffer analysis. Consider the fixpoint
calculation in Fig. 12.6 on p. 224, and specifically state T13 = R13�N {c ≥ 1}.
Suppose now that no integer tightening is performed so that T13 = {0 ≤
i, 1 ≤ c ≤ 255, 255i + c ≤ 2550}; that is, the upper bound of i is 2549

255
≈ 0.996.

Given that i ≤ 9 in the previous iteration, the loop is assumed to be unstable
and a new iteration is calculated. However, when the equation for R defined
on p. 222 is evaluated, the state is divided into three states, in which i ≤ 9,
i = 10, and i ≥ 11. While the latter two intersections are empty, the inequality
i ≤ 9 discards the state where i takes on the values 9 < i < 0.997. Thus, the
resulting state for R is no larger than in the previous iteration and a fixpoint
is reached. Thus, a fixpoint can be reached in the midst of a loop body.

Detecting stability at the level of individual basic blocks is only benefi-
cial if the analysis can efficiently determine which other basic block still needs
evaluation. For instance, using a flag for each basic block that indicates if that
block is stable has the drawback that the flags of all blocks in the hierarchical
order need to be examined until an unstable block is found. However, this
test is cheap and in any case better than evaluating a basic block unneces-
sarily. Other ways of avoiding unnecessary evaluation were proposed by Jones
in the context of attribute grammars [107]. However, the underlying itera-
tion strategy resembles Gauss-Seidel iteration [55,58], and it is not clear how
his technique maps to chaotic iteration with widening points. An orthogonal
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approach is taken by Le Charlier and Van Hentenryck [41], in which equations
are evaluated in a demand-driven way, although the premature evaluation of
basic blocks that later have to be evaluated again cannot be avoided either.

14.4 Limitations of the String Buffer Analysis

Tracking the first nul position of string buffers is an abstraction that works
well for many string-manipulating programs. However, since information
about other nul positions in the buffer is lost, there are evidently some pro-
grams with coding practices that are correct but that cannot be proven as
such. Furthermore, our analysis is limited by the expressiveness of the TVPI
domain, which can only track linear relations involving two variables. This
section demonstrates how these limitations can lead to an imprecise analysis.
While the examples presented are manufactured to elude the capability of the
analyser, they are realistic enough to be found in standard C programs.

14.4.1 Weaknesses of Tracking First nul Positions

String buffers that use a nul character to indicate the end of a string can
be constructed in many ways, some of which elude the expressiveness of the
analysis presented. Consider the following C program that zeros the buffer
pointed to by s and then writes the buffer character by character:

���� *s = malloc (10);
���� t[4];
memset(s,0 ,10);
s[0]=’o’; s[1]=’k’;
strcpy(t, s);

Suppose that sn denotes the nul position of the dynamically allocated
buffer. The call to memset will zero the whole memory region pointed to by
s such that the first nul position is at sn = 0. After the first write, the
analysis can only deduce 1 ≤ sn ≤ 10 since the first nul (if it exists) must
occur to the right of the character ’o’. Likewise, after the second write, the
analysis infers 2 ≤ sn ≤ 10. Copying the content of the pointer s to the
four character buffer t is safe if sn ≤ 3. However, 2 ≤ sn ≤ 10 does not
imply sn ≤ 3, and therefore the call to strcpy generates a spurious warning.
In contrast, inserting s[2]=’a’; s[3]=’y’; in front of the call to strcpy
will correctly signal that t is accessed out-of-bounds in every execution of
the program since the new nul position 4 ≤ sn ≤ 10 implies that sn ≤ 3
cannot be satisfied. In this case, a definite error can be reported rather than
a warning. On the contrary, writing the same four characters to the same
positions in reverse order only leads to a warning: sn = 0 holds true until
s[0] is written, and this then updates the nul position to 1 ≤ sn ≤ 10.
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c==0*(p+res)='\0' p+++
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noP Q
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U

Fig. 14.6. The control-flow graph of the example that searches for the first nul
position in the buffer pointed-to by p.

In general, writing the zero character before writing the actual content of a
buffer and writing several zero characters into a buffer cannot be adequately
tracked by the analysis. Additional abstractions similar to the string buffer
analysis are necessary to prove these examples correct. For instance, tracking
the number of nul characters towards the end of a buffer could infer that
the s buffer is still nul -terminated when its contents are copied. No such
abstraction is currently implemented in our analyser since the need for such
an abstraction has not arisen from the program under test. Note, however, that
an abstraction that states that a whole range of elements only contains zero
bytes is important for dealing with arrays of pointers, where this information
is needed to express that pointers have no offset (in contrast to an arbitrary
offset). The lack of such an abstraction in the analysis presented prohibits the
verification of the example in Chap. 1. A more detailed explanation of this
phenomenon is given in Sect. 14.5.

The next section details the limitation of the string buffer analysis that
arises through the use of the TVPI domain.

14.4.2 Handling Symbolic nul Positions

Mixing the convention of explicitly sized string buffers with buffers that are
implicitly terminated by a nul character can lead to subtle coding errors. In
particular, strings received over the network by an attacker might include a
deliberate nul character to trigger a faulty behaviour in the program. The
following example reads a string from the standard input into a fixed-sized
buffer and then checks if the read string contains a nul character, thereby
defying the above-mentioned attack.

ssize_t res;
���� buf [2048];
���� c;
����* p=buf;
res = read(0, p, 2047);
�� (res==-1) ���	�
 1;
*(p+res)=’\0’;
����� (*p) p++;
�� (p-buf <res)

printf("The�input�contains�a�NUL�character .\n");
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Fig. 14.7. Calculating the length of a string buffer in which the nul position may
be in a range of locations. In order to infer that the loop terminates, the nul position
of the buffer has to be always larger than the current pointer offset.

In this code snippet, the while loop calculates the length of the string by
advancing the pointer to the first nul position. The loop terminates at the
latest when the offset of p is equal to res since the statement *(p+res)=’\0’
ensures that a nul character exists at this index. However, the loop may exit
earlier if the read data contain a nul character. We shall discuss the fixpoint
calculation of the loop using the control-flow graph shown in Fig. 14.6.

Let n denote the nul position of buf, let p represent the offset of the
pointer p, and let c denote the character that is read by the access to *p.
Note that the call to the read function takes an upper limit on the number
of characters that should be read (here 2047) and returns the number of
characters actually read in res or −1 if an error occurs. Thus, since the error
state is removed by �� (res==-1), the assignment *(p+res)=’\0’ always
accesses buf within bounds and sets the abstract nul position to res. Thus,
on entering the loop, the first nul position n is at indices less than or equal
to res such that the state P satisfies 0 ≤ n ≤ 2047. Since a nul position
exists somewhere within the buffer, the analysis should be able to prove that
the �����-loop never accesses buf out-of-bounds.

Unfortunately, the TVPI domain is not expressive enough to infer this.
Before we discuss the loss of precision, consider the fixpoint computation using
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general polyhedra that is depicted in Fig. 14.7. For brevity, we only depict the
relation between the two variables n (nul position) and p (pointer offset) and
define the states P,Q,R, S, T, U ∈ Num of the control-flow graph on-the-fly.
The first graph depicts the relationship between n and p on entering the loop
where P = {p = 0, 0 ≤ n ≤ 2047} holds. The merge of the control flow is
expressed as Q = P �N U , and the read access *p will update the character c
as follows:

R = (∃c(Q) �N {p < n, 1 ≤ c ≤ 255})
�N (∃c(Q) �N {p = n, c = 0})
�N (∃c(Q) �N {p > n, 0 ≤ c ≤ 255})

The guards p < n and p = n that partition the initial state are indicated in
the first graph by the dashed lines. (Note that p < n is tightened to p ≤ n−1.)
The result R is then refined by the loop condition to S = R�N {c = 0} for the
loop exit and to T = R�N {c > 0}�N R�N {c < 0} for the loop body. In fact,
the latter is equivalent to T = R �N {1 ≤ c ≤ 255} and recovers the second
behaviour in the definition of R in which p < n. This state, depicted in the
second graph of Fig. 14.7, is transposed by one unit by the loop body p++ to
U = T � p := p + 1 before being joined with the state P from graph one. The
result is a new state for Q, as depicted in graph three, which is again used to
evaluate the read access *p, resulting in a new state R in which c = 0 is related
to p = n and 1 ≤ c ≤ 255 is related to p < n. Intersecting the state R with the
loop invariant 1 ≤ c ≤ 255 yields a new state for T that corresponds to the
region delineated by a bold line in graph four. This state is again translated
by one unit and joined with P , yielding the state in graph five. A fixpoint
of the loop is reached when p is incremented to coincide with the maximum
nul position n = 2047 as shown in graph six. This state is partitioned a final
time by the read access *p. This time, the result of intersecting the state R
with 1 ≤ c ≤ 255 and translating it by one unit results in a state T that is
entailed by the join Q of the previous iteration. Thus, using general polyhedra,
a fixpoint of the ����� loop is detected where p ≤ n holds in Q, and hence
p ≤ 2047 and *p is within the bounds of buf.

The important observation in this example is that the read access sets
c according to the relative position of p and n and thereby relates the three
variables p, n, and c. Specifically, the abstract domain must be able to express
that p ≤ n (from p = n) when c = 0 and that p + 1 ≤ n (from p < n)
when 1 ≤ c ≤ 255. These two behaviours are combined by the first join
operation in the definition of R, which calculates a single inequality relating p,
n, and c. This inequality can be derived manually as follows: For c = 0, the first
inequality is equivalent to p ≤ n+fc for any f ∈ N. The same inequality must
hold for p+1 ≤ n+fc if 1 ≤ c ≤ 255, for which f = 1

255 is a solution. To ensure
f ∈ N, the inequality is multiplied by 255 to give 255p+255 ≤ 255n+ c. This
inequality has three non-zero coefficients and is therefore not generated during
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the join of the TVPI domain. Using the techniques presented in Sect. 8.2.3,
the three TVPI inequalities that approximate the above inequality 255p −
255n − c ≤ −255 are p ≤ n (for minExp(−c,Q) = 255), 255p − c ≤ −255
(for minExp(−n, Q) = 0), and −255n − c ≤ −255 (for minExp(p, Q) = 0).
Applying the loop invariant by calculating T = R �N {1 ≤ c ≤ 255} and
performing integer tightening simplifies the three inequalities to p ≤ n, p ≤ 1,
and −n ≤ −1, respectively. These inequalities are indicated by the thin dotted
boundaries in graph four. Thus, the intersection with 1 ≤ c ≤ 255 cannot
recover the relational information p < n. Translating this approximated state
and joining it with P results in the additional state indicated by the thin
dashed line in graph five. From this point onwards, the third behaviour of
the read access is enabled such that the intersection with 1 ≤ c ≤ 255 does
not imply p < n anymore. As a result, no fixpoint is detected when p is
incremented to the maximum value of n and the verification of the loop fails.

When the join in a weakly relational domain discards valuable information
with respect to a certain variable, the program can be analysed with several
domains at once, one for each polyhedron that needs to remain separate. The
challenge is to decide if and when to split the domain into two. For the task
of retaining the necessary precision in the example above, this decision is easy
since the two domains in which c = 0 and 1 ≤ c ≤ 255 should be kept apart.
Thus, the analysis can be reformulated in terms of pairs of polyhedra in which
all polyhedral operations are applied to each element of the pair. The only
exception is the read access, in which the state 〈Q1, Q2〉 is joined and split
according to the access position:

〈R1, R2〉 = 〈 ∃c((Q1 �N {p < n}) �N (Q2 �N {p < n})) �N {1 ≤ c ≤ 255},
(∃c((Q1 �N {p = n}) �N (Q2 �N {p = n})) �N {c = 0}) �N

(∃c((Q1 �N {p = n}) �N (Q2 �N {p > n})) �N {0 ≤ c ≤ 255}) 〉

In the definition above, the two incoming polyhedra are partitioned sep-
arately using the access position before they are joined and c is updated. In
particular, in the context of the example above, the states Q2 �N {p < n}
and Q1�N {p = n} will always be empty, which indicates that the two behav-
iours, namely accessing in front of and at the nul position, remain distinct.
We chose to express the third behaviour, namely an access past the first nul
position, in the second polyhedron under the assumption that p > n is not
satisfied in a loop whose termination requires the existence of a nul position.
Thus, the states where c = 0 and where 1 ≤ c ≤ 255 stay separate in the
states Q1, R1 and Q2, R2, respectively.

Interestingly, splitting the control-flow path of the loop depending on the
value of the polyhedral variable c is equivalent to using a Boolean flag since
c can only assume two states, namely c = 0 and 1 ≤ c ≤ 255. While these
two states can be distinguished by a general polyhedral domain, the TVPI
domain is not expressive enough. Specifically, the TVPI domain can only
express that the range of a variable changes with the truth value of a Boolean
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flag. As shown in this example, string buffer analysis requires distinguishing
the relationships p ≤ n− 1 and p ≤ n using a Boolean flag.

So far, a split of the control flow using two TVPI domains instead of one
has not been implemented as it involves a major redesign of the interface
between the abstract transfer functions and the domain. In particular, since
the analysis should be fully automatic, a heuristic is needed that introduces
split points and join points. Up to now, the need for more than three variables
has only arisen when analysing string buffers that have a non-constant nul
position. Since the relationships that the character c should distinguish are
known, it might be easier to monitor the value of c and to add the inequality
q ≤ n − 1 whenever c is restricted to zero. Such a refinement is known as a
propagation rule in the context of constraint handling rules [76].

14.5 Proposed Future Refinements

One deficiency of the analysis presented is its inability to argue about the
contents of arrays. Ignoring individual array elements is acceptable if arrays
contain pure data that have little impact on the overall execution of the pro-
gram. However, in the case where an array contains pointers, a fatal precision
loss occurs that impacts on the usability of the analysis. Recall that, whenever
the elements of an array are written within a loop, no new fields are added to
the array such that the contents of the array must be assumed to be arbitrary.
If a program – like qmail-smtp – uses a hash table that contains pointers, an
array holding the hash table will be cleared and afterwards filled with pointers.
Since no fields of the array are modelled, the written points-to sets and the
pointer offsets are lost. As a consequence, whenever an element from the hash
table is retrieved, the analysis approximates the read value with a temporary
polyhedral variable that is restricted to the range of an unsigned 32-bit value.
Hence, when dereferencing this value as a pointer, the analyser will issue a
warning that a value is dereferenced. After removing this erroneous assump-
tion, the remaining state is empty since the points-to set of the read value is
empty. Thus, while the approximation to the values of the array elements is
sound, it prevents the analyser from completing the analysis of the program.
This precision loss is one reason why we were not able to obtain a full analysis
of the qmail-smtp program. Future work therefore has to focus on finding an
abstraction to array elements that retains enough information on pointers. In
particular, it is necessary to infer that all elements of an array are zero (to
model the fact that the pointers stored in the array have a zero offset) and
to summarise the possible l-values that are stored in the different elements
of the array in a single set of l-values. Such an abstraction would enable the
analysis of a hash table as well as a full analysis of the introductory example
in Chap. 1 where an array of pointers to command-line arguments is passed
to the main function of the program.
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Conclusion and Outlook

Conclusion

In this book we formally, yet concisely, defined a value-range analysis of C
programs. Moreover, all aspects of the analysis were described, ranging from
the concrete and abstract semantics including the abstraction relation, over
an efficient polyhedral domain, up to necessary implementation details.

With respect to the analysis of C programs, we defined an intermediate
language called Core C that reduces general C programs to operations on
memory. In fact, Core C is closer to assembler than C but retains information
on boundaries of variables and assignments of structures, thereby enabling a
simpler analysis and more precise warnings. A novelty in presenting an analy-
sis for full C is a concise abstraction relation that relates the bits of integer
variables with polyhedral variables. Furthermore, the abstraction allows for
linear relationships when accessing the same memory regions with different
sizes. In order to attain a fully automated analysis of C, we proposed to infer
relevant fields of C program variables at analysis time.

With respect to the second strand of this book, namely the research into ef-
ficient polyhedral domains, we presented the TVPI domain. The TVPI domain
constitutes the first efficient relational domain that allows for arbitrary coef-
ficients in inequalities. The latter is a requirement for expressing the analysis
of overlapping fields and nul positions in string buffers. The implementation
of the TVPI domain also addresses the problem of excessively growing co-
efficients during fixpoint calculations on polyhedra by partially tightening a
TVPI domain around the contained integral point set.

As a third strand, we proposed a new abstraction for tracking nul
positions in string buffers, an acceleration technique called widening with
landmarks that overcomes deficiencies in the common widening/narrowing
approach, and a combination of points-to analysis with numeric analysis.

We hope that the analysis presented will form a reference for future de-
velopments, be it as an extension to the analysis in the form of additional
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abstractions (which can be added analogously to the tracking of nul posi-
tions) or using different approaches to modelling low-level memory accesses
and other low-level operations. In the long run, we expect static analyses of
memory management to mature and to grow into commonplace tools that are
part of every development process. Ideally, verifying correct memory man-
agement will become a requirement in future software development since it
constitutes a measurable quality of software.
We conclude this book with some possible extensions to the presented analysis.

Outlook

In addition to the refinement of modelling arrays that was proposed in
Chap. 14, the analysis can be extended and improved in several directions,
some of which are outlined below.

Replacing the Polyhedral Domain While the TVPI domain offers oper-
ations that run in polynomial time, new insights into the manipulation of
general polyhedra [169] might yield an implementation that outperforms
the TVPI domain in practice. However, general polyhedra require tech-
niques for integral tightening to address the excessive growth of coefficients
that can occur during fixpoint calculations.

Analysing Assembler instead of Core C While the conciseness of our
intermediate language Core C is key to the definition of the semantics
and the analysis itself, an analysis of the executable may be more prac-
tical, as the source code of a program and the linked-in libraries is not
required. Furthermore, the correctness of an analysis at the assembler
level can be assessed with respect to the semantics of each machine in-
struction, whereas our approach assumes that the translation from GCC’s
internal structure to Core C is correct and that the translation of the in-
termediate structure to the machine code is correct. Analysing machine
code can therefore improve the confidence in the analysis results. Future
work should assess the feasibility of this approach and determine if the
ample set of assembler instructions can be translated into a small num-
ber of primitives. Static analysis on assembler has already been used to
aid in inspecting executables [15] for security vulnerabilities. In this con-
text, it has been observed that debugging information might be absent
or deliberately misleading. However, debugging information could still be
exploited to make warnings raised by the analysis intelligible to the user,
a problem that can severely restrict the usefulness of analysing assembler.
In this case, and if the analysis of assembler is too slow, a hybrid ap-
proach is possible. For instance, Rival proposes to infer the invariants on
the source code and check that they still hold on the assembler level by
using debugging information [150]. A similar approach is used within the
CIL framework [137], which inserts range checks into C programs. Harren



15 Conclusion and Outlook 279

and Necula augmented this program transformation to check the validity
of its output in the executable [94].

Better Analysis of Dynamically Allocated Memory The analysis thus
far can only prove programs correct that allocate and free simple buffers,
in particular, recursive data structures are handled inadequately. New
domains are necessary to express the shape of data structures in memory.
Interesting candidates for domains that are able to model the recursive
nature of data structures are, for instance, regular expressions [70] or
domains based on separation logic [40]. Challenging research tasks are
therefore the definition of efficient domain operations and the combination
of these domains with the polyhedral domain.

Analysing Floating-Point Arithmetic Calculations using floating-point
arithmetic can be expressed as operations on two polyhedral variables
that represent the mantissa and the exponent [165]. Rounding modes of
the IEEE 754 Standard [105] can be implemented using approaches sim-
ilar to those of right shifts on integers, as shown in Fig. 3.7 on p. 61.
A practical implementation is required to assess the practicality of this
approach.

Context-Sensitive Analysis For an analysis to scale to a large code basis,
a context-sensitive analysis seems to be an inevitable requirement. Future
work needs to address how a context-sensitive analysis can be achieved
using polyhedra. In general this is not possible as polyhedra are not meet
distributive. This implies that an input-output relationship of a function
expressed as a polyhedron cannot be refined at each call site by merely
intersecting with the ranges of the arguments without loosing precision.

Analysis of Concurrent Programs Through the use of libraries, C pro-
grams can exploit the multi-tasking capabilities of the underlying operat-
ing system. The analysis of such concurrent programs poses the problem
of identifying those parts of the program that may run in parallel and to
simulate all possible interleaved executions of these program parts.
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Core C Example

The following Core C program is the result of translating the program in
Fig. 1.2. The program contains line annotations that are not part of the
grammar presented in Chap. 2. Furthermore, the variable declarations of the
main function are split into input, output, and local variables to facilitate
the removal of variables at function exit. Variable names of the form t#X
are temporary variables that are mostly created as anonymous temporaries
within the compiler but partly stem from the translation into Core C. The
call to printf is automatically translated as primitive, as the definition is
not available.

Note that this is the “incorrect” version in which the signed character t#3
in block b105 is sign-extended to the signed integer t#4. The corrected version
contains an extra cast statement, (uint8) t#3.1 = (int8) t#3, and t#3.1
is then assigned to t#4.

var t#12 : 11;
t#12 = "’%c’�:�%i\n";

function main
input argc : 4, argv : 4;
output #result : 4;
local i : 4, str : 4, dist : 1024, t#0 : 4,

t#1 : 4, t#2 : 4, t#3 : 1, t#4 : 4,
t#5 : 4, t#6 : 4, t#7 : 4, t#8 : 4,
t#9 : 1, i.0 : 4, t#10 : 4, t#11 : 4,
t#13 : 4;

b20
#line=9
�� (int32) argc !=2 then jump b41
jump b55

b41
(int32) t#0 = 1;
jump b358

b55
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#line =10
(uint32) t#1 = argv +4;
(uint32) str = *t#1;
#line =11
t#2 = &dist;
memset (( uint32) t#2, (int32) 0, (uint32) 1024)
jump b197

b105
#line =14
(int8) t#3 = *str;
(int32) t#4 = (int8) t#3;
t#6 = &dist;
(int32) t#6 = 4*t#4+t#6;
(int32) t#5 = *t#6;
(int32) t#7 = t#5+1;
t#8 = &dist;
(int32) t#8 = 4*t#4+t#8;
(int32) *t#8 = t#7;
#line =15
(uint32) str = str +1;
jump b197

b197
#line =13
(int8) t#9 = *str;
�� (int8) t#9!=0 then jump b105
jump b224

b224
#line =18
(int32) i = 32;
jump b322

b241
#line =19
(int32) i.0 = i;
t#11 = &dist;
(int32) t#11 = 4*i.0+t#11;
(int32) t#10 = *t#11;
t#13 = &t#12;
printf (( uint32) t#13, (int32) i, (int32) t#10)
#line =18
(int32) i = i+1;
jump b322

b322
�� (int32) i <=127 then jump b241
jump b342

b342
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#line =21
(int32) t#0 = 0;
jump b358

b358
(int32) #result = t#0;
������
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M. Okada and I. Satoh, editors, Asian Computing Science Conference, volume
4435 of LNCS, pages 272–300, Tokyo, Japan, December 2006. Springer.

62. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Constraints
among Variables of a Program. In Principles of Programming Languages, pages
84–97, Tucson, Arizona, USA, January 1978. ACM.

63. C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks. In USENIX Security Symposium,
pages 63–78. USENIX Association, 1998.

64. C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer Overflows: At-
tacks and Defenses for the Vulnerability of the Decade. In Information Surviv-
ability Conference and Exposition, volume II, pages 154–163. IEEE Computer
Society, 1998.

65. M. Das. Unification-based pointer analysis with directional assignments. ACM
SIGPLAN Notices, 35(5):35–46, 2000.

66. M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating the Impact of
Scalable Pointer Analysis on Optimization. LNCS, 2126:260–279, July 2001.

67. H. Davenport. The Higher Arithmetic. Cambridge University Press, 7th edi-
tion, 1952.

68. A. M. Day. The implementation of a 2D convex hull algorithm using pertur-
bation. Computer Graphics Forum, 9(4):309–316, 1990.

69. D. Delmas and J. Souyris. Astrée: From Research to Industry. In H. R. Nielson
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